25 research outputs found

    Testing the epidemic change in nearly nonstationary autoregressive processes

    Get PDF
    Some tests for an epidemic type change in a first order nearly nonstationary autoregressive process are investigated. Limit distributions of the tests are found under no change. Consistencyis examined under short epidemics in the mean of innovations

    Une Topologie Préhilbertienne Sur L'espace Des Mesures A Signes Bornées

    No full text
    International audienceLet X a metric space and B its Borel o-algebra. Let M the space of bounded signed measures on B. We construct a scalar product on M so that M can be imbedded in a reproducing kernel space H„ . We give hilbertian bases of . Weak topology and prehilbertian topology are compared on M . Compactness criteria in H„ and M are given.Soit B la tribu borĂ©lienne d’un espace mĂ©trique X. Soit M l’espace des mesures Ă  signes bornĂ©es sur B. On construit un produit scalaire permettant de plonger M dans un espace fonctionnel autoreproduisant . On donne des bases hilbertiennes de H„ . On compare la topologie faible et la trace de la topologie hilbertienne sur M . On donne des critĂšres de relative compacitĂ© dans H„ et dans M

    Convergences Stochastiques De Suites De Mesures Aléatoires Signées Considérées Comme Variables Aléatoires Hilbertiennes

    No full text
    International audienceLet X be a metric space and B its Borel cr-algebra. Let AI the space of bounded signed measures on B. In order to construct the signed random measures as hilbertian random variables we use the embedding of AI in a separable reproducing kernel space Hk. That construction is effectively possible when X is compact or locally compact or separable. Mesurability problems due to embedding are resolved in these three cases. Real random variables naturally associated with a so defined random measure //* are ingrains of Hr elements with respect to /i*. For random sequences and their associated random variables, three modes of convergence are studied (almost surely, in probability, in law)Soit B la tribu borĂ©lienne d’un espace mĂ©trique X. On utilise le plongement de l’espace M. des mesures signĂ©es bornĂ©es sur B dans un espace de Hilbert autoreproduisant sĂ©parable Hk afin de construire les mesures alĂ©atoires signĂ©es comme variables alĂ©atoires hilbertiennes. Cette construction est effective- ment possible dans les trois cas oĂč X est compact, localement compact, sĂ©parable. Les problĂšmes de mesurabilitĂ© dus Ă  ce plongement sont rĂ©solus dans ces 3 cas. Les variables alĂ©atoires rĂ©elles naturellement associĂ©es Ă  une mesure alĂ©atoire ainsi dĂ©finie sont les intĂ©grales des Ă©lĂ©ments de Hk par rapport Ă  cette mesure. On Ă©tudie la convergence presque sĂ»re, en probabilitĂ© et en loi des suites de mesures alĂ©atoires et de leurs v.a.r. associĂ©es

    Weak Hölder convergence of processes with application to the perturbed empirical process

    No full text
    We consider stochastic processes as random elements in some spaces of Hölder functions vanishing at infinity. The corresponding scale of spaces C0α,0C^{α,0}_0 is shown to be isomorphic to some scale of Banach sequence spaces. This enables us to obtain some tightness criterion in these spaces. As an application, we prove the weak Hölder convergence of the convolution-smoothed empirical process of an i.i.d. sample (X1,...,Xn)(X_1,...,X_n) under a natural assumption about the regularity of the marginal distribution function F of the sample. In particular, when F is Lipschitz, the best possible bound α<1/2 for the weak α-Hölder convergence of such processes is achieved

    Hölderian invariance principle for Hilbertian linear processes

    No full text
    Let (Οn)n≄1(\xi_n)_{n\ge 1} be the polygonal partial sums processes built on the linear processes Xn=∑i≄0ai(Ï”n−i)X_n=\sum_{i\ge 0}a_i(\epsilon_{n-i}), n ≄ 1, where (Ï”i)i∈Z(\epsilon_i)_{i\in\mathbb{Z}} are i.i.d., centered random elements in some separable Hilbert space H\mathbb{H} and the ai's are bounded linear operators H→H\mathbb{H}\to \mathbb{H}, with ∑i≄0∄ai∄<∞\sum_{i\ge 0}\lVert a_i\rVert<\infty. We investigate functional central limit theorem for Οn\xi_n in the Hölder spaces Hρo(H)\mathrm{H}^o_\rho(\mathbb{H}) of functions x:[0,1]→Hx:[0,1]\to\mathbb{H} such that ||x(t + h) - x(t)|| = o(p(h)) uniformly in t, where p(h) = hαL(1/h), 0 ≀ h ≀ 1 with 0 ≀ α ≀ 1/2 and L slowly varying at infinity. We obtain the Hρo(H)\mathrm{H}^o_\rho(\mathbb{H}) weak convergence of Οn\xi_n to some H\mathbb{H} valued Brownian motion under the optimal assumption that for any c>0, tP(∄ϔ0∄>ct1/2ρ(1/t))=o(1)tP(\lVert \epsilon_0\rVert>ct^{1/2}\rho(1/t))=o(1) when t tends to infinity, subject to some mild restriction on L in the boundary case α = 1/2. Our result holds in particular with the weight functions p(h) = h1/2lnÎČ(1/h), ÎČ > 1/2>

    Processus stochastiques dans les espaces de Besov

    No full text
    LILLE1-BU (590092102) / SudocSudocFranceF

    On Bernstein–Kantorovich invariance principle in Hölder spaces and weighted scan statistics

    No full text
    Let Οn be the polygonal line partial sums process built on i.i.d. centered random variables Xi, i ≄ 1. The Bernstein-Kantorovich theorem states the equivalence between the finiteness of E|X1|max(2,r) and the joint weak convergence in C[0, 1] of n−1∕2Οn to a Brownian motion W with the moments convergence of E∄n−1/2Οn∄∞r E∄n-1∕2Οn∄∞r to E∄W∄∞r E∄W∄∞r . For 0 < α < 1∕2 and p (α) = (1 ∕ 2 - α) -1, we prove that the joint convergence in the separable Hölder space Hαo Hαo of n−1∕2Οn to W jointly with the one of E∄n−1∕2Οn∄αr E∄n-1∕2Οn∄αr to E∄W∄αr E∄W∄αr holds if and only if P(|X1| > t) = o(t−p(α)) when r 1∕2 − 1∕p with an appropriate normalization

    On the asymptotic of the maximal weighted increment of a random walk with regularly varying jumps: the boundary case

    No full text
    Let (Xi)i1 be i.i.d. random variables with EX1 = 0, regularly varying with exponent a > 2 and taP(jX1j > t) L(t) slowly varying as t ! 1. We give the limit distribution of Tn( )=max0j 0. We prove that c1 n (Tn( a) n), converges in distribution to some random variable Z if and only if L has a limit a 2 [0;1] at infinity. In such case, there are A > 0, B 2 R such that Z = AVa;; + B in distribution, where for 0 < < 1, Va;; := max(T( a); Ya) with T( a) and Ya independent and Va;;0 := T( a), Va;;1 := Ya. When < 1, a possible choice for the normalization is cn = n1=a and n = 0, with Z = Va;; . We also build an example where L has no limit at infinity and (Tn( ))n1 has for each 2 [0;1] a subsequence converging after normalization to Va;;

    Estimating a changed segment in a sample

    No full text
    Abstract In the paper we consider a changed segment model for sample distributions. We generalize DĂŒmbgen&apos;s [6] change point estimator and obtain optimal rates of convergence of estimators of the begining and the length of the changed segment
    corecore