147 research outputs found

    Reconstructing pedigrees: some identifiability questions for a recombination-mutation model

    Full text link
    Pedigrees are directed acyclic graphs that represent ancestral relationships between individuals in a population. Based on a schematic recombination process, we describe two simple Markov models for sequences evolving on pedigrees - Model R (recombinations without mutations) and Model RM (recombinations with mutations). For these models, we ask an identifiability question: is it possible to construct a pedigree from the joint probability distribution of extant sequences? We present partial identifiability results for general pedigrees: we show that when the crossover probabilities are sufficiently small, certain spanning subgraph sequences can be counted from the joint distribution of extant sequences. We demonstrate how pedigrees that earlier seemed difficult to distinguish are distinguished by counting their spanning subgraph sequences.Comment: 40 pages, 9 figure

    Approximate pexiderized gamma-beta type functions

    Get PDF

    Reconstruction of one-dimensional chaotic maps from sequences of probability density functions

    Get PDF
    In many practical situations, it is impossible to measure the individual trajectories generated by an unknown chaotic system, but we can observe the evolution of probability density functions generated by such a system. The paper proposes for the first time a matrix-based approach to solve the generalized inverse Frobenius–Perron problem, that is, to reconstruct an unknown one-dimensional chaotic transformation, based on a temporal sequence of probability density functions generated by the transformation. Numerical examples are used to demonstrate the applicability of the proposed approach and evaluate its robustness with respect to constantly applied stochastic perturbations
    • …
    corecore