64 research outputs found
A Systematic approach to visual system rehabilitation: population receptive field analysis and real-time functional magnetic resonance imaging neurofeedback methods
Visual information transmission flows from the retinal ganglion cells to the lateral geniculate nucleus and then to the primary visual cortex (V1), the chief cortical relay of visual information and in turn, to “higher” extrastriate areas. Beyond area V1, visual processing is distributed across multiple interconnected brain areas, the precise role of which and their interactions are not yet, completely understood. To add to the dynamic complexity of the system, feedback from higher areas and modulation by top-down processes, such as attention are often critical in the formation of visual percepts
Estimating average single-neuron visual receptive field sizes by fMRI
The noninvasive estimation of neuronal receptive field (RF) properties in vivo allows a detailed understanding of brain organization as well as its plasticity by longitudinal following of potential changes. Visual RFs measured invasively by electrophysiology in animal models have traditionally provided a great extent of our current knowledge about the visual brain and its disorders. Voxel-based estimates of population RF (pRF) by functional magnetic resonance imaging (fMRI) in humans revolutionized the field and have been used extensively in numerous studies. However, current methods cannot estimate single-neuron RF sizes as they reflect large populations of neurons with individual RF scatter. Here, we introduce an approach to estimate RF size using spatial frequency selectivity to checkerboard patterns. This method allowed us to obtain noninvasive, average single-neuron RF estimates over a large portion of human early visual cortex. These estimates were significantly smaller compared with prior pRF methods. Furthermore, fMRI and electrophysiology experiments in nonhuman primates demonstrated an exceptionally good match, validating the approach
Efficient Temporal Processing of Naturalistic Sounds
In this study, we investigate the ability of the mammalian auditory pathway to adapt its strategy for temporal processing under natural stimulus conditions. We derive temporal receptive fields from the responses of neurons in the inferior colliculus to vocalization stimuli with and without additional ambient noise. We find that the onset of ambient noise evokes a change in receptive field dynamics that corresponds to a change from bandpass to lowpass temporal filtering. We show that these changes occur within a few hundred milliseconds of the onset of the noise and are evident across a range of overall stimulus intensities. Using a simple model, we illustrate how these changes in temporal processing exploit differences in the statistical properties of vocalizations and ambient noises to increase the information in the neural response in a manner consistent with the principles of efficient coding
Neural Decision Boundaries for Maximal Information Transmission
We consider here how to separate multidimensional signals into two
categories, such that the binary decision transmits the maximum possible
information transmitted about those signals. Our motivation comes from the
nervous system, where neurons process multidimensional signals into a binary
sequence of responses (spikes). In a small noise limit, we derive a general
equation for the decision boundary that locally relates its curvature to the
probability distribution of inputs. We show that for Gaussian inputs the
optimal boundaries are planar, but for non-Gaussian inputs the curvature is
nonzero. As an example, we consider exponentially distributed inputs, which are
known to approximate a variety of signals from natural environment.Comment: 5 pages, 3 figure
Adaptive Filtering Enhances Information Transmission in Visual Cortex
Sensory neuroscience seeks to understand how the brain encodes natural
environments. However, neural coding has largely been studied using simplified
stimuli. In order to assess whether the brain's coding strategy depend on the
stimulus ensemble, we apply a new information-theoretic method that allows
unbiased calculation of neural filters (receptive fields) from responses to
natural scenes or other complex signals with strong multipoint correlations. In
the cat primary visual cortex we compare responses to natural inputs with those
to noise inputs matched for luminance and contrast. We find that neural filters
adaptively change with the input ensemble so as to increase the information
carried by the neural response about the filtered stimulus. Adaptation affects
the spatial frequency composition of the filter, enhancing sensitivity to
under-represented frequencies in agreement with optimal encoding arguments.
Adaptation occurs over 40 s to many minutes, longer than most previously
reported forms of adaptation.Comment: 20 pages, 11 figures, includes supplementary informatio
Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex
Creating focal lesions in primary visual cortex (V1) provides an opportunity to study the role of extra-geniculo-striate pathways for activating extrastriate visual cortex. Previous studies have shown that more than 95% of neurons in macaque area V2 and V3 stop firing after reversibly cooling V1 [1], [2], [3]. However, no studies on long term recovery in areas V2, V3 following permanent V1 lesions have been reported in the macaque. Here we use macaque fMRI to study area V2, V3 activity patterns from 1 to 22 months after lesioning area V1. We find that visually driven BOLD responses persist inside the V1-lesion projection zones (LPZ) of areas V2 and V3, but are reduced in strength by ∼70%, on average, compared to pre-lesion levels. Monitoring the LPZ activity over time starting one month following the V1 lesion did not reveal systematic changes in BOLD signal amplitude. Surprisingly, the retinotopic organization inside the LPZ of areas V2, V3 remained similar to that of the non-lesioned hemisphere, suggesting that LPZ activation in V2, V3 is not the result of input arising from nearby (non-lesioned) V1 cortex. Electrophysiology recordings of multi-unit activity corroborated the BOLD observations: visually driven multi-unit responses could be elicited inside the V2 LPZ, even when the visual stimulus was entirely contained within the scotoma induced by the V1 lesion. Restricting the stimulus to the intact visual hemi-field produced no significant BOLD modulation inside the V2, V3 LPZs. We conclude that the observed activity patterns are largely mediated by parallel, V1-bypassing, subcortical pathways that can activate areas V2 and V3 in the absence of V1 input. Such pathways may contribute to the behavioral phenomenon of blindsight
Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE
Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE
Intrinsic gain modulation and adaptive neural coding
In many cases, the computation of a neural system can be reduced to a
receptive field, or a set of linear filters, and a thresholding function, or
gain curve, which determines the firing probability; this is known as a
linear/nonlinear model. In some forms of sensory adaptation, these linear
filters and gain curve adjust very rapidly to changes in the variance of a
randomly varying driving input. An apparently similar but previously unrelated
issue is the observation of gain control by background noise in cortical
neurons: the slope of the firing rate vs current (f-I) curve changes with the
variance of background random input. Here, we show a direct correspondence
between these two observations by relating variance-dependent changes in the
gain of f-I curves to characteristics of the changing empirical
linear/nonlinear model obtained by sampling. In the case that the underlying
system is fixed, we derive relationships relating the change of the gain with
respect to both mean and variance with the receptive fields derived from
reverse correlation on a white noise stimulus. Using two conductance-based
model neurons that display distinct gain modulation properties through a simple
change in parameters, we show that coding properties of both these models
quantitatively satisfy the predicted relationships. Our results describe how
both variance-dependent gain modulation and adaptive neural computation result
from intrinsic nonlinearity.Comment: 24 pages, 4 figures, 1 supporting informatio
Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms
Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information
- …