8,098 research outputs found

    Teams Frightened of Failure Fail More: Modelling Reward Sensitivity in Teamwork

    Get PDF
    According to Gray's Reinforcement Sensitivity Theory (RST), individuals have differing sensitivities to rewards and punishments, which in turn affect their behaviours. The behavioural inhibition system (BIS) is associated with sensitivity to punishment while the behavioural activation system (BAS) is associated with sensitivity to reward. In this work, we model BIS/BAS by supplementing an existing agent-based model of team collaboration in order to explore the combined effect on team performance for a more complex and realistic personality structure. We investigate the significance of BIS/BAS on team behaviour for tasks with differing levels of uncertainty. Findings include a prediction that for tasks with uncertainty, a majority of personality types are significantly influenced by behavioural activation system, and that all personality types are significantly negatively influenced by behavioural inhibition system. The more sensitive to punishments, the worse teams perform

    Reconfigurable, Wideband, Low-Profile, Circularly Polarized Antenna and Array Enabled by an Artificial Magnetic Conductor Ground

    Full text link
    © 1963-2012 IEEE. A reconfigurable, wideband, and low-profile circular polarization (CP) antenna is presented. Its wideband CP reconfigurability is realized by incorporating RF switches into a cross-bowtie radiator. A compact, wide bandwidth, and polarization-independent artificial magnetic conductor ground plane is developed to minimize the overall profile of the antenna while maintaining its wide bandwidth. The simplicity of this single-element design facilitates the realization of a reconfigurable, wide bandwidth CP array that achieves higher directivity without changing its overall profile. Prototypes of the single element and of a 1 × 4 array of these elements were fabricated and tested. The measured results for both prototypes are in good agreement with their simulated values, validating their design principles. They are low profile with a height ∼ 0.05 λ0. The array exhibits a wide fractional operational bandwidth: 1.65 GHz (21.7%), and a high realized gain: 13 dBic. Since they would enhance their channel capacity and avoid polarization mismatch issues, these reconfigurable CP antenna systems are very suitable for modern wireless systems

    Calculation of Diamagnetic Susceptibility Tensors of Organic Crystals: From Coronene to Pharmaceutical Polymorphs

    Get PDF
    Understanding why crystallization in strong magnetic fields can lead to new polymorphs requires methods to calculate the diamagnetic response of organic molecular crystals. We develop the calculation of the macroscopic diamagnetic susceptibility tensor, χ^{cryst}, for organic molecular crystals using periodic density functional methods. The crystal magnetic susceptibility tensor, χ^{cryst}, for all experimentally known polymorphs, and its molecular counterpart, χ^{mol}, are calculated for flexible pharmaceuticals such as carbamazepine, flufenamic acid, and chalcones, and rigid molecules, such as benzene, pyridine, acridine, anthracene, and coronene, whose molecular magnetic properties have been traditionally studied. A tensor addition method is developed to approximate the crystal diamagnetic susceptibility tensor, χ^{cryst}, from the molecular one, χ^{mol}, giving good agreement with those calculated directly using the more costly periodic density functional method for χ^{cryst}. The response of pharmaceutical molecules and crystals to magnetic fields, as embodied by χ^{cryst}, is largely determined by the packing in the crystal, as well as the molecular conformation. The anisotropy of χ^{cryst} can vary considerably between polymorphs though the isotropic terms are fairly constant. The implications for developing a computational method for predicting whether crystallization in a magnetic field could produce a novel or different polymorph are discussed

    Cavity-Backed Proximity-Coupled Reconfigurable Microstrip Antenna with Agile Polarizations and Steerable Beams

    Full text link
    © 1963-2012 IEEE. A major challenge for a combined reconfigurable antenna is to realize both polarization switching and beam steering independently in a compact antenna structure. A cavity-backed proximity-coupled reconfigurable microstrip antenna proposed in this communication provides an efficient solution. Beam lead p-i-n diodes DSM8100-000 are employed as switching elements to achieve reconfiguration. Three different linear polarizations (0°, 45°, and 90°) are realized by switching the diodes on a proximity-coupled feed network. For each polarization state, the main beam can be steered to three directions by using a reconfigurable parasitic-element network. The parasitic-element network is printed on the same plane of the radiating patch, thereby making the antenna compact. This antenna has nine different working modes, and for all the working modes, the reflection coefficients are below -10 dB with the measured realized gains ranging from 7.2 to 8.1 dBi

    A Period-Reconfigurable Leaky-Wave Antenna with Fixed-Frequency and Wide-Angle Beam Scanning

    Full text link
    © 1963-2012 IEEE. A novel fixed-frequency beam-scanning leaky-wave antenna (LWA) based on a period-reconfigurable structure is presented. Operating at 5 GHz, the antenna consists of a slotted substrate integrated waveguide and 54 electrically small patches. Each patch element is etched with two dumbbell-shaped slots, and its operating state can be flexibly controlled by the biasing of the p-i-n diode on a parasitic strip. An ideal array model employing isotropic point sources is used for the analysis on the scanning mechanism, based on which a new method for suppressing the higher order space harmonics is developed. Using this method, the monoharmonic radiation range can be dramatically extended, and a wide-angle beam scanning can be achieved by manipulating the period length of the LWA. An FPGA controlling platform is designed for the electronic control of the antenna. The measured results validate that the proposed antenna achieves good performance of wide-angle scanning (125°) with a peak gain of 11.8 dBi at a fixed frequency

    On the Application of Strong Magnetic Fields during Organic Crystal Growth

    Get PDF
    We investigate the effect of crystal growth within a magnetic field for three polymorphic pharmaceuticals, using an experiment where the magnetic field can be varied in strength without altering other crystallization conditions. In the case of carbamazepine, fields above 0.6 T produce metastable form I, and for flufenamic acid, there is an increased propensity to crystallize metastable form I around 1 T. In contrast, the magnetic field has no effect on the crystallization of mefenamic acid, a closely related molecule. The growth of the metastable β polymorph of coronene within a magnetic field at ambient temperature is difficult to reproduce but has been seen as a minor component, consistent with this transformation to the more stable form being facile, depending on the particle size. Calculations of the diamagnetic susceptibility tensors of the polymorphs and their morphologies provide semiquantitative estimates of how the diamagnetic susceptibilities of crystallites differ between polymorphs and explain why mefenamic acid crystallization is unaffected. As the onset of crystallization of carbamazepine and coronene, as defined by changes in turbidity, occur at lower temperatures and hence greater supersaturations in certain ranges of magnetic field strength, this suggests that the field causes precipitation of the metastable form through Ostwald’s rule of stages

    Advances in Reconfigurable Antenna Systems Facilitated by Innovative Technologies

    Full text link
    © 2013 IEEE. Future fifth generation (5G) wireless platforms will require reconfigurable antenna systems to meet their performance requirements in compact, light-weight, and cost-effective packages. Recent advances in reconfigurable radiating and receiving structures have been enabled by a variety of innovative technology solutions. Examples of reconfigurable partially reflective surface antennas, reconfigurable filtennas, reconfigurable Huygens dipole antennas, and reconfigurable feeding network-enabled antennas are presented and discussed. They represent novel classes of frequency, pattern, polarization, and beam-direction reconfigurable systems realized by the innovative combinations of radiating structures and circuit components

    Low sidelobe synthesis of dipole arrays by element orientation selection using binary codec genetic algorithm

    Full text link
    © 2017 Euraap. Selecting appropriate element orientations can significantly reduce the sidelobe level of the antenna array. In this paper, a binary coded genetic algorithm (BCGA) which selects the element orientations from specified discrete angles, is proposed to reduce the sidelobe level (SLL) of the array. Compared to the conventional GA, the BCGA is much faster in this application. Synthesis results show the effectiveness and efficiency of the proposed method

    Diabat method for polymorph free energies: Extension to molecular crystals

    Get PDF
    Lattice-switch Monte Carlo and the related diabat methods have emerged as efficient and accurate ways to compute free energy differences between polymorphs. In this work, we introduce a one-to-one mapping from the reference positions and displacements in one molecular crystal to the positions and displacements in another. Two features of the mapping facilitate lattice-switch Monte Carlo and related diabat methods for computing polymorph free energy differences. First, the mapping is unitary so that its Jacobian does not complicate the free energy calculations. Second, the mapping is easily implemented for molecular crystals of arbitrary complexity. We demonstrate the mapping by computing free energy differences between polymorphs of benzene and carbamazepine. Free energy calculations for thermodynamic cycles, each involving three independently computed polymorph free energy differences, all return to the starting free energy with a high degree of precision. The calculations thus provide a force field independent validation of the method and allow us to estimate the precision of the individual free energy differences

    A novel low-profile wideband reconfigurable CP antenna array

    Full text link
    © Institution of Engineering and Technology.All Rights Reserved. For future wireless communications, cost-effective, low-profile circular polarization (CP) antennas with wide bandwidth and high directivity are highly desirable to increase system capacity and suppress polarization mismatch. In this paper, a wideband circular polarization antenna array integrated with a polarization-independent artificial magnetic conductor (AMC) is reported that meets the demands. First, a wideband CP reconfigurable antenna with a pair of cross-bowtie radiators and a metal ground is presented to achieve a fractional bandwidth of 35.9%. By replacing the metal ground with a polarization-independent AMC ground, the antenna profile is reduced from 0.25λ0 to 0.05λ0 with only a slight bandwidth decrease. A wideband CP reconfigurable 4-element linear array is achieved using four of those elements. It is low profile (0.05 λ0), and has a wide operating bandwidth (21.7%), and a high realized gain (13 dBic)
    • …
    corecore