2,802 research outputs found

    Detection of Polystyrene Microplastic Particles in Water Using Surface-Functionalized Terahertz Microfluidic Metamaterials

    Get PDF
    We propose a novel method for detecting microplastic particles in water using terahertz metamaterials. Fluidic channels are employed to flow the water, containing polystyrene spheres, on the surface of the metamaterials. Polystyrene spheres are captured only near the gap structure of the metamaterials as the gap areas are functionalized. The resonant frequency of terahertz metamaterials increased while we circulated the microplastic solution, as polystyrene spheres in the solution are attached to the metamaterial gap areas, which saturates at a specific frequency as the gap areas are filled by the polystyrene spheres. Experimental results were revisited and supported by finite-difference time-domain simulations. We investigated how this method can be used for the detection of microplastics with various solution densities. The saturation time of the resonant frequency shift was found to decrease, while the saturated resonant frequency shift increased as the solution density increased

    Dehydration-mediated cluster formation of nanoparticles

    Get PDF
    Drying procedure is a powerful method to modulate the bottom-up assembly of basic building component. The initially weak attraction between the components screened in a solution strengthens as the solvent evaporates, organizing the components into structures. Drying is process-dependent, irreversible, and nonequilibrated, thus the mechanism and the dynamics are influenced by many factors. Therefore, the interaction of the solvent and the elements during the drying procedure as well as the resulting pattern formations are strongly related. Nonetheless still many things are open in questions in terms of their dynamics. In this study, nanoscale dehydration procedure is experimentally investigated using a nanoparticle (NP) model system. The role of water is verified in a single NP scale and the patterns of collective NP clusters are determined. Stepwise drying procedures are proposed based on the location from which water is removed. Effective water exodus from a unit NP surface enhances the attractive interaction in nanoscale and induces heterogeneous distribution in microscale. This study provides fundamental proof of systematic relation between the dehydration process and the resultant cluster patterns in hierarchical multiscales.110Ysciescopu

    Collective ordering of microscale matters in natural analogy

    Get PDF
    Collective interaction occurs in many natural and artificial matters in broad scales. In a biological system, collective spatial organization of live individuals in a colony is important for their viability determination. Interactive motions between a single individual and an agglomerate are critical for whole procedure of the collective behaviors, but few has been clarified for these intermediate range behaviors. Here, collective interactions of microscale matters are investigated with human cells, plant seeds and artificial microspheres in terms of commonly occurring spatial arrangements. Human cancer cells are inherently attractive to form an agglomerate by cohesive motion, while plant chia seeds are repulsive by excreting mucilage. Microsphere model is employed to investigate the dynamic assembly equilibrated by an attraction and repulsion. There is a fundamental analogy in terms of an onset of regular pattern formation even without physical contact of individuals. The collective interactions are suggested to start before the individual components become physically agglomerated. This study contributes to fundamental understanding on the microscale particulate matters and natural pattern formation which are further useful for various applications both in academic and industrial areas.110Ysciescopu

    Optimum periodicity of repeated contractile actions applied in mass transport

    Get PDF
    Dynamically repeated periodic patterns are abundant in natural and artificial systems, such as tides, heart beats, stock prices, and the like. The characteristic repeatability and periodicity are expected to be optimized in effective system-specific functions. In this study, such optimum periodicity is experimentally evaluated in terms of effective mass transport using one-valve and multi-valve systems working in contractile fluid flows. A set of nanoscale gating functions is utilized, operating in nanocomposite networks through which permeates selectively pass under characteristic contractile actions. Optimized contractile periodicity exists for effective energy impartment to flow in a one-valve system. In the sequential contractile actions for a multi-valve system, synchronization with the fluid flow is critical for effective mass transport. This study provides fundamental understanding on the various repeated periodic patterns and dynamic repeatability occurring in nature and mechanical systems, which are useful for broad applications.1110Ysciescopu

    Interactive ion-mediated sap flow regulation in Olive and Laurel stems: physicochemical characteristics of water transport via the pit structure

    Get PDF
    Sap water is distributed and utilized through xylem conduits, which are vascular networks of inert pipes important for plant survival. Interestingly, plants can actively regulate water transport using ion-mediated responses and adapt to environmental changes. However, ionic effects on active water transport in vascular plants remain unclear. In this report, the interactive ionic effects on sap transport were systematically investigated for the first time by visualizing the uptake process of ionic solutions of different ion compositions (K+/Ca2+) using synchrotron X-ray and neutron imaging techniques. Ionic solutions with lower K+/Ca2+ ratios induced an increased sap flow rate in stems of Olea europaea L. and Laurus nobilis L. The different ascent rates of ionic solutions depending on K+/Ca2+ ratios at a fixed total concentration increases our understanding of ion-responsiveness in plants from a physicochemical standpoint. Based on these results, effective structural changes in the pit membrane were observed using varying ionic ratios of K+/Ca2+. The formation of electrostatically induced hydrodynamic layers and the ion-responsiveness of hydrogel structures based on Hofmeister series increase our understanding of the mechanism of ion-mediated sap flow control in plants.open1155sciescopu

    Functional water flow pathways and hydraulic regulation in the xylem network of arabidopsis

    Get PDF
    In vascular plants, the xylem network constitutes a complex microfluidic system. The relationship between vascular network architecture and functional hydraulic regulation during actual water flow remains unexplored. Here, we developed a method to visualize individual xylem vessels of the 3D xylem network of Arabidopsis thaliana, and to analyze the functional activities of these vessels using synchrotron X-ray computed tomography with hydrophilic gold nanoparticles as flow tracers. We show how the organization of the xylem network changes dynamically throughout the plant, and reveal how the elementary units of this transport system are organized to ensure both long-distance axial water transport and local lateral water transport. Xylem vessels form distinct clusters that operate as functional units, and the activity of these units, which determines water flow pathways, is modulated not only by varying the number and size of xylem vessels, but also by altering their interconnectivity and spatial arrangement. Based on these findings, we propose a regulatory model of water transport that ensures hydraulic efficiency and safety.X1111Ysciescopu

    Methods for determining the optimal arrangement of water deluge systems on offshore installations

    Get PDF
    Offshore installations are prone to fire and/or explosion accidents. Fires have particularly serious consequences due to their high temperatures and heat flux, which affect humans, structures and environments alike. Due to the hydrocarbon explosions caused by delayed ignition following gas dispersion, fires can be the result of immediate ignition after gas release. Accordingly, it can be difficult to decrease their frequency, which is an element of risk (risk=frequency×consequence), using an active protection system (APS) such as gas detectors capable of shutting down the operation. Thus, it is more efficient to reduce the consequence using a passive protection system (PSS) such as water spray. It is important to decide the number and location of water deluge systems, thus the aim of this study is to introduce a new procedure for optimising the locations of water deluge systems using the water deluge location index (WLI) proposed herein. The locations of water deluge systems are thus optimised based on the results of credible fire scenarios using a three-dimensional computational fluid dynamics (CFD) tool. The effects of water spray and the effectiveness of the WLI are investigated in comparison with uniformly distributed sprays

    Linear Confinement for Mesons and Nucleons in AdS/QCD

    Full text link
    By using a new parametrization of the dilaton field and including a cubic term in the bulk scalar potential, we realize linear confinement in both meson and nucleon sectors within the framework of soft-wall AdS/QCD. At the same time this model also correctly incorporate chiral symmetry breaking. We compare our resulting mass spectra with experimental data and find good agreement between them.Comment: 14 pages, published version in JHE

    In vivo two-photon fluorescent imaging of fluoride with a desilylation-based reactive probe

    Get PDF
    A two-photon excitable molecular probe for fluoride, developed based on a fluoride-specific desilylation reaction, is demonstrated to be useful for fluorescent imaging of fluoride ions in live zebrafish by one-photon as well as two-photon microscopy for the first time.X117778Nsciescopu
    corecore