154,548 research outputs found

    Type-I superconductivity in noncentrosymmetric superconductor AuBe

    Full text link
    The noncentrosymmetric superconductor AuBe have been investigated using the magnetization, resistivity, specific heat, and muon-spin relaxation/rotation measurements. AuBe crystallizes in the cubic FeSi-type B20 structure with superconducting transition temperature observed at TcT_{c} = 3.2 ±\pm 0.1 K. The low-temperature specific heat data, CelC_{el}(T), indicate a weakly-coupled fully gapped BCS superconductivity with an isotropic energy gap 2Δ(0)/kBTc\Delta(0)/k_{B}T_{c} = 3.76, which is close to the BCS value of 3.52. Interestingly, type-I superconductivity is inferred from the μ\muSR measurements, which is in contrast with the earlier reports of type-II superconductivity in AuBe. The Ginzburg-Landau parameter is κGL\kappa_{GL} = 0.4 << 1/2\sqrt{2}. The transverse-field μ\muSR data transformed in the maximum entropy spectra depicting the internal magnetic field probability distribution, P(H), also confirms the absence of the mixed state in AuBe. The thermodynamic critical field, HcH_{c}, calculated to be around 259 Oe. The zero-field μ\muSR results indicate that time-reversal symmetry is preserved and supports a spin-singlet pairing in the superconducting ground state.Comment: 9 pages, 9 figure

    Frustration of tilts and A-site driven ferroelectricity in KNbO_3-LiNbO_3 alloys

    Full text link
    Density functional calculations for K_{0.5}Li_{0.5}NbO_3 show strong A-site driven ferroelectricity, even though the average tolerance factor is significantly smaller than unity and there is no stereochemically active A-site ion. This is due to the frustration of tilt instabilities by A-site disorder. There are very large off-centerings of the Li ions, which contribute strongly to the anisotropy between the tetragonal and rhombohedral ferroelectric states, yielding a tetragonal ground state even without strain coupling.Comment: 4 pages, 5 figure

    Electronic Structure and Bulk Spin Valve Behavior in Ca3_3Ru2_2O7_7

    Full text link
    We report density functional calculations of the magnetic properties and Fermiology of Ca3_3Ru2_2O7_7. The ground state consists of ferromagnetic bilayers, stacked antiferromagnetically. The bilayers are almost but not exactly half-metallic. In the ferromagnetic state opposite spin polarizations are found for in-plane and out-of-plane transport. Relatively high out of plane conductivity is found for the majority spin, which is relatively weakly conductive in-plane. In the ground state in-plane quantities are essentially the same, but the out of plane transport is strongly reduced.Comment: 5 page

    Electronic Structure and Thermoelectric Prospects of Phosphide Skutterudites

    Full text link
    The prospects for high thermoelectric performance in phosphide skutterudites are investigated based on first principles calculations. We find that stoichiometric CoP_3 differs from the corresponding arsenide and antimonide in that it is metallic. As such the band structure must be modified if high thermopowers are to be achieved. In analogy to the antimonides it is expected that this may be done by filling with La. Calculations for LaFe_4P_12 show that a gap can in fact be opened by La filling, but that the valence band is too light to yield reasonable p-type thermopowers at appropriate carrier densities; n-type La filled material may be more favorable.Comment: 3 pages, 3 figures, 1 tabl
    corecore