44,236 research outputs found

    Xe films on a decagonal Al-Ni-Co quasicrystal surface

    Full text link
    The grand canonical Monte Carlo method is employed to study the adsorption of Xe on a quasicrystalline Al-Ni-Co surface. The calculation uses a semiempirical gas-surface interaction, based on conventional combining rules and the usual Lennard-Jones Xe-Xe interaction. The resulting adsorption isotherms and calculated structures are consistent with the results of LEED experimental data. In this paper we focus on five features not discussed earlier (Phys. Rev. Lett. 95, 136104 (2005)): the range of the average density of the adsorbate, the order of the transition, the orientational degeneracy of the ground state, the isosteric heat of adsorption of the system, and the effect of the vertical cell dimension.Comment: 6 pages, 5 pic

    Variational Density Matrix Method for Warm Condensed Matter and Application to Dense Hydrogen

    Get PDF
    A new variational principle for optimizing thermal density matrices is introduced. As a first application, the variational many body density matrix is written as a determinant of one body density matrices, which are approximated by Gaussians with the mean, width and amplitude as variational parameters. The method is illustrated for the particle in an external field problem, the hydrogen molecule and dense hydrogen where the molecular, the dissociated and the plasma regime are described. Structural and thermodynamic properties (energy, equation of state and shock Hugoniot) are presented.Comment: 26 pages, 13 figures. submitted to Phys. Rev. E, October 199

    The generator coordinate method in time-dependent density-functional theory: memory made simple

    Full text link
    The generator coordinate (GC) method is a variational approach to the quantum many-body problem in which interacting many-body wave functions are constructed as superpositions of (generally nonorthogonal) eigenstates of auxiliary Hamiltonians containing a deformation parameter. This paper presents a time-dependent extension of the GC method as a new approach to improve existing approximations of the exchange-correlation (XC) potential in time-dependent density-functional theory (TDDFT). The time-dependent GC method is shown to be a conceptually and computationally simple tool to build memory effects into any existing adiabatic XC potential. As an illustration, the method is applied to driven parametric oscillations of two interacting electrons in a harmonic potential (Hooke's atom). It is demonstrated that a proper choice of time-dependent generator coordinates in conjunction with the adiabatic local-density approximation reproduces the exact linear and nonlinear two-electron dynamics quite accurately, including features associated with double excitations that cannot be captured by TDDFT in the adiabatic approximation.Comment: 10 pages, 13 figure
    corecore