112 research outputs found

    Pose-Free Neural Radiance Fields via Implicit Pose Regularization

    Full text link
    Pose-free neural radiance fields (NeRF) aim to train NeRF with unposed multi-view images and it has achieved very impressive success in recent years. Most existing works share the pipeline of training a coarse pose estimator with rendered images at first, followed by a joint optimization of estimated poses and neural radiance field. However, as the pose estimator is trained with only rendered images, the pose estimation is usually biased or inaccurate for real images due to the domain gap between real images and rendered images, leading to poor robustness for the pose estimation of real images and further local minima in joint optimization. We design IR-NeRF, an innovative pose-free NeRF that introduces implicit pose regularization to refine pose estimator with unposed real images and improve the robustness of the pose estimation for real images. With a collection of 2D images of a specific scene, IR-NeRF constructs a scene codebook that stores scene features and captures the scene-specific pose distribution implicitly as priors. Thus, the robustness of pose estimation can be promoted with the scene priors according to the rationale that a 2D real image can be well reconstructed from the scene codebook only when its estimated pose lies within the pose distribution. Extensive experiments show that IR-NeRF achieves superior novel view synthesis and outperforms the state-of-the-art consistently across multiple synthetic and real datasets.Comment: Accepted by ICCV202

    WaveNeRF: Wavelet-based Generalizable Neural Radiance Fields

    Full text link
    Neural Radiance Field (NeRF) has shown impressive performance in novel view synthesis via implicit scene representation. However, it usually suffers from poor scalability as requiring densely sampled images for each new scene. Several studies have attempted to mitigate this problem by integrating Multi-View Stereo (MVS) technique into NeRF while they still entail a cumbersome fine-tuning process for new scenes. Notably, the rendering quality will drop severely without this fine-tuning process and the errors mainly appear around the high-frequency features. In the light of this observation, we design WaveNeRF, which integrates wavelet frequency decomposition into MVS and NeRF to achieve generalizable yet high-quality synthesis without any per-scene optimization. To preserve high-frequency information when generating 3D feature volumes, WaveNeRF builds Multi-View Stereo in the Wavelet domain by integrating the discrete wavelet transform into the classical cascade MVS, which disentangles high-frequency information explicitly. With that, disentangled frequency features can be injected into classic NeRF via a novel hybrid neural renderer to yield faithful high-frequency details, and an intuitive frequency-guided sampling strategy can be designed to suppress artifacts around high-frequency regions. Extensive experiments over three widely studied benchmarks show that WaveNeRF achieves superior generalizable radiance field modeling when only given three images as input.Comment: Accepted to ICCV 2023. Project website: https://mxuai.github.io/WaveNeRF

    Prevalence of ideal cardiovascular health and its relationship with relative handgrip strength in rural northeast China

    Get PDF
    ObjectivesWe aimed to investigate ideal cardiovascular health (CVH), its relationship with handgrip strength, and its components in rural China.MethodsWe conducted a cross-sectional study of 3,203 rural Chinese individuals aged ≥35 years in Liaoning Province, China. Of these, 2,088 participants completed the follow-up survey. Handgrip strength was estimated using a handheld dynamometer and was normalized to body mass. Ideal CVH was assessed using seven health indicators (smoking, body mass index, physical activity, diet, cholesterol, blood pressure, and glucose). Binary logistic regression analyses were performed to assess the correlation between handgrip strength and ideal CVH.ResultsWomen had a higher rate of ideal cardiovascular health (CVH) than men (15.7% vs. 6.8%, P < 0.001). Higher handgrip strength correlated with a higher proportion of ideal CVH (P for trend <0.001). After adjusting for confounding factors, the odds ratios (95% confidence interval) of ideal CVH across increasing handgrip strength tripartite were 1.00 (reference), 2.368 (1.773, 3.164), and 3.642 (2.605, 5.093) in the cross-sectional study and 1.00 (reference), 2.088 (1.074, 4.060), and 3.804 (1.829, 7.913) in the follow-up study (all P < 0.05).ConclusionIn rural China, the ideal CVH rate was low, and positively correlated with handgrip strength. Grip strength can be a rough predictor of ideal CVH and can be used to provide guidelines for improving CVH in rural China

    Hemolytic properties of fine particulate matter (PM2.5) in in vitro systems

    Get PDF
    Epidemiological studies have suggested that inhalation exposure to particulate matter (PM) air pollution, especially fine particles (i.e., PM2.5 (PM with an aerodynamic diameter of 2.5 microns or less)), is causally associated with cardiovascular health risks. To explore the toxicological mechanisms behind the observed adverse health effects, the hemolytic activity of PM2.5 samples collected during different pollution levels in Beijing was evaluated. The results demonstrated that the hemolysis of PM2.5 ranged from 1.98% to 7.75% and demonstrated a clear dose–response relationship. The exposure toxicity index (TI) is proposed to represent the toxicity potential of PM2.5, which is calculated by the hemolysis percentage of erythrocytes (red blood cells, RBC) multiplied by the mass concentration of PM2.5. In a pollution episode, as the mass concentration increases, TI first increases and then decreases, that is, TI (low pollution levels) < TI (heavy pollution levels) < TI (medium pollution levels). In order to verify the feasibility of the hemolysis method for PM toxicity detection, the hemolytic properties of PM2.5 were compared with the plasmid scission assay (PSA). The hemolysis results had a significant positive correlation with the DNA damage percentages, indicating that the hemolysis assay is feasible for the detection of PM2.5 toxicity, thus providing more corroborating information regarding the risk to human cardiovascular health

    Coordinated economic dispatch of the primary and secondary heating systems considering the boiler’s supplemental heating

    Get PDF
    District heating systems have been widely used in large and medium-sized cities. Typical district heating systems consist of the primary heating system (PHS) and the secondary heating system (SHS) operating in isolation. However, the isolated dispatch of the PHS and the SHS has poor adjustability and large losses, resulting in unnecessary operation costs. To address these issues, a coordinated economic dispatching model (CEDM) for the primary and secondary heating systems considering the boiler’s supplemental heating is proposed in this study, which characterized the physical properties of the PHS and the SHS in detail. Considering that the PHS and the SHS are controlled separately without central operators in practice, it is difficult to dispatch them in a centralized method. Thus, the master-slave splitting algorithm is innovatively introduced to solve the CEDM in a decentralized way. Finally, a P6S12 system is utilized to analyze and verify the effectiveness and optimality of the proposed algorithm

    Research and application of fire air and smoke flow emergency control technology for mine complex ventilation network

    Get PDF
    In view of the difficult situation of fire prevention, control, disaster resistance and relief in complex ventilation networks, the laws of air flow disturbance, heat transfer and smoke flow diffusion in air flow field, temperature field and smoke flow concentration field are analyzed. According to the evolution law of smoke flow at different fire source locations, an emergency linkage regulation scheme of fire air and smoke flow that can simultaneously meet the requirements of smoke exhaust air volume and stope air volume is proposed. Taking Zhuanlongwan Coal Mine as an application case, the fire smoke emergency linkage control system of Zhuanlongwan Coal Mine was established. In order to analyze the effect of air control and smoke exhaust, combined with the actual tunnel and ventilation parameters, a three-dimensional visualization model of its complex ventilation network was built based on VENTSIM software. The VentFire module is used to simulate the wind and smoke spreading effect of the fire scene in different fire source locations. The smoke exhaust effect and air volume distribution before and after the emergency control scheme is adopted are analyzed. The results show that when a fire occurs in different locations, the emergency smoke exhaust scheme should be started in time. On the basis of meeting the smoke exhaust air volume, the air volume of other key locations can still ensure more than 90% of the normal ventilation period, which can meet the disaster control and relief needs during the disaster of Zhuanlongwan Coal Mine

    Genomic analysis of oesophageal squamous-cell carcinoma identifies alcohol drinking-related mutation signature and genomic alterations

    Get PDF
    Approximately half of the world's 500,000 new oesophageal squamous-cell carcinoma (ESCC) cases each year occur in China. Here, we show whole-genome sequencing of DNA and RNA in 94 Chinese individuals with ESCC. We identify six mutational signatures (E1–E6), and Signature E4 is unique in ESCC linked to alcohol intake and genetic variants in alcohol-metabolizing enzymes. We discover significantly recurrent mutations in 20 protein-coding genes, 4 long non-coding RNAs and 10 untranslational regions. Functional analyses show six genes that have recurrent copy-number variants in three squamous-cell carcinomas (oesophageal, head and neck and lung) significantly promote cancer cell proliferation, migration and invasion. The most frequently affected genes by structural variation are LRP1B and TTC28. The aberrant cell cycle and PI3K-AKT pathways seem critical in ESCC. These results establish a comprehensive genomic landscape of ESCC and provide potential targets for precision treatment and prevention of the cancer

    Transient Inhibition of mTORC1 Signaling Ameliorates Irradiation-Induced Liver Damage

    Get PDF
    Recurrent liver cancer after surgery is often treated with radiotherapy, which induces liver damage. It has been documented that activation of the TGF-β and NF-κB signaling pathways plays important roles in irradiation-induced liver pathologies. However, the significance of mTOR signaling remains undefined after irradiation exposure. In the present study, we investigated the effects of inhibiting mTORC1 signaling on irradiated livers. Male C57BL/6J mice were acutely exposed to 8.0 Gy of X-ray total body irradiation and subsequently treated with rapamycin. The effects of rapamycin treatment on irradiated livers were examined at days 1, 3, and 7 after exposure. The results showed that 8.0 Gy of irradiation resulted in hepatocyte edema, hemorrhage, and sinusoidal congestion along with a decrease of ALB expression. Exposure of mice to irradiation significantly activated the mTORC1 signaling pathway determined by pS6 and p-mTOR expression via western blot and immunostaining. Transient inhibition of mTORC1 signaling by rapamycin treatment consistently accelerated liver recovery from irradiation, which was evidenced by decreasing sinusoidal congestion and increasing ALB expression after irradiation. The protective role of rapamycin on irradiated livers might be mediated by decreasing cellular apoptosis and increasing autophagy. These data suggest that transient inhibition of mTORC1 signaling by rapamycin protects livers against irradiation-induced damage
    • …
    corecore