529 research outputs found

    A solution for secure use of Kibana and Elasticsearch in multi-user environment

    Full text link
    Monitoring is indispensable to check status, activities, or resource usage of IT services. A combination of Kibana and Elasticsearch is used for monitoring in many places such as KEK, CC-IN2P3, CERN, and also non-HEP communities. Kibana provides a web interface for rich visualization, and Elasticsearch is a scalable distributed search engine. However, these tools do not support authentication and authorization features by default. In the case of single Kibana and Elasticsearch services shared among many users, any user who can access Kibana can retrieve other's information from Elasticsearch. In multi-user environment, in order to protect own data from others or share part of data among a group, fine-grained access control is necessary. The CERN cloud service group had provided cloud utilization dashboard to each user by Elasticsearch and Kibana. They had deployed a homemade Elasticsearch plugin to restrict data access based on a user authenticated by the CERN Single Sign On system. It enabled each user to have a separated Kibana dashboard for cloud usage, and the user could not access to other's one. Based on the solution, we propose an alternative one which enables user/group based Elasticsearch access control and Kibana objects separation. It is more flexible and can be applied to not only the cloud service but also the other various situations. We confirmed our solution works fine in CC-IN2P3. Moreover, a pre-production platform for CC-IN2P3 has been under construction. We will describe our solution for the secure use of Kibana and Elasticsearch including integration of Kerberos authentication, development of a Kibana plugin which allows Kibana objects to be separated based on user/group, and contribution to Search Guard which is an Elasticsearch plugin enabling user/group based access control. We will also describe the effect on performance from using Search Guard.Comment: International Symposium on Grids and Clouds 2017 (ISGC 2017

    A new analytical method for self-force regularization II. Testing the efficiency for circular orbits

    Full text link
    In a previous paper, based on the black hole perturbation approach, we formulated a new analytical method for regularizing the self-force acting on a particle of small mass μ\mu orbiting a Schwarzschild black hole of mass MM, where μM\mu\ll M. In our method, we divide the self-force into the S~\tilde S-part and R~\tilde R-part. All the singular behaviors are contained in the S~\tilde S-part, and hence the R~\tilde R-part is guaranteed to be regular. In this paper, focusing on the case of a scalar-charged particle for simplicity, we investigate the precision of both the regularized S~\tilde S-part and the R~\tilde R-part required for the construction of sufficiently accurate waveforms for almost circular inspiral orbits. For the regularized S~\tilde S-part, we calculate it for circular orbits to 18 post-Newtonian (PN) order and investigate the convergence of the post-Newtonian expansion. We also study the convergence of the remaining R~\tilde{R}-part in the spherical harmonic expansion. We find that a sufficiently accurate Green function can be obtained by keeping the terms up to =13\ell=13.Comment: 21pages, 12 figure

    Self-force Regularization in the Schwarzschild Spacetime

    Full text link
    We discuss the gravitational self-force on a particle in a black hole space-time. For a point particle, the full (bare) self-force diverges. The metric perturbation induced by a particle can be divided into two parts, the direct part (or the S part) and the tail part (or the R part), in the harmonic gauge, and the regularized self-force is derived from the R part which is regular and satisfies the source-free perturbed Einstein equations. But this formulation is abstract, so when we apply to black hole-particle systems, there are many problems to be overcome in order to derive a concrete self-force. These problems are roughly divided into two parts. They are the problem of regularizing the divergent self-force, i.e., ``subtraction problem'' and the problem of the singularity in gauge transformation, i.e., ``gauge problem''. In this paper, we discuss these problems in the Schwarzschild background and report some recent progress.Comment: 34 pages, 2 figures, submitted to CQG, special volume for Radiation Reaction (CAPRA7

    Dysfunction from Focusing on Overseas Business

    Get PDF
    For this study, a questionnaire survey was administered to 824 people who had been posted overseas for at least one year (657 of whom had been involved in a business for the overseas market) in order to explore the factors behind the success of an overseas business. The results made clear, on one hand, that if Japanese companies focus on an overseas business, by, for example, defining the objectives and roles of the business, investing in market research, and posting core personnel abroad, they reach desirable outcomes, but, on the other hand, those outcomes are adversely affected when companies define the objectives and roles prior to conducting market research. A focus on overseas business increases personnel’s organizational identification with his or her headquarters and with the overseas business unit. However, dysfunction occurs when personnel feel high organizational identification with the overseas business unit, and that they are not expected to show customer-oriented behavior. According to our additional analyses, this dysfunction of organizational identification emerges when one perceives a weak identity of one’s organization.

    Deep Adversarial Reinforcement Learning With Noise Compensation by Autoencoder

    Get PDF
    We present a new adversarial learning method for deep reinforcement learning (DRL). Based on this method, robust internal representation in a deep Q-network (DQN) was introduced by applying adversarial noise to disturb the DQN policy; however, it was compensated for by the autoencoder network. In particular, we proposed the use of a new type of adversarial noise: it encourages the policy to choose the worst action leading to the worst outcome at each state. When the proposed method, called deep Q-W-network regularized with an autoencoder (DQWAE), was applied to seven different games in an Atari 2600, the results were convincing. DQWAE exhibited greater robustness against the random/adversarial noise added to the input and accelerated the learning process more than the baseline DQN. When applied to a realistic automatic driving simulation, the proposed DRL method was found to be effective at rendering the acquired policy robust against random/adversarial noise

    Reproducibility of breath-hold irradiation of lung

    Get PDF
    Methods to evaluate the positional reproducibility of breath-hold irradiation mostly require manual operation. The purpose of this study is to propose a method to determine the reproducibility of breath-hold irradiation of lung tumors between fractions using non-artificial methods. This study included 13 patients who underwent terminal exhaled breath-hold irradiation for primary and metastatic lung cancer. All subjects received a prescribed dose of 60 Gy/8 fractions. The contours of the gross tumor volume (GTV) were extracted by threshold processing using treatment-planning computed tomography (CT) and cone-beam CT (CBCT), which was done just before the beginning of the treatment. The method proposed in this study evaluates the dice similarity coefficient (DSC) and Hausdorff distance (HD) by comparing two volumes, the GTVCTS (GTV obtained from treatment-planning CT) and GTVCBCT (GTV obtained from CBCT). The reference contours for DSC and HD are represented by GTVCTS. The results demonstrated good visual agreement for cases with a DSC of ~0.7. However, apparent misalignment occurred when the DSC was 2 mm in 3 out of 13 cases, and when the DSC was ~0.7, the HD was ~1 mm. In addition, cases with greater HD also demonstrated more significant variability. It was found that the DSC and HD evaluation methods for the positional reproducibility of breath-hold irradiation proposed in this study are straightforward and can be performed without the involvement of humans. Our study is of extreme significance in the field of radiation studies

    Study on the Kondo effect in the tunneling phenomena through a quantum dot

    Full text link
    We review our recent studies on the Kondo effect in the tunneling phenomena through quantum dot systems. Numerical methods to calculate reliable tunneling conductance are developed. In the first place, a case in which electrons of odd number occupy the dot is studied, and experimental results are analyzed based on the calculated result. Tunneling anomaly in the even-number-electron occupation case, which is recently observed in experiment and is ascribed to the Kondo effect in the spin singlet-triplet cross over transition region, is also examined theoretically.Comment: 9 pages, 5 figures, Proceedings of the 2nd Hiroshima Workshop--Transport and Thermal Properties of Advanced Materials--, Hiroshima, Japan, August 16-19, 200

    Analytical solutions of bound timelike geodesic orbits in Kerr spacetime

    Full text link
    We derive the analytical solutions of the bound timelike geodesic orbits in Kerr spacetime. The analytical solutions are expressed in terms of the elliptic integrals using Mino time λ\lambda as the independent variable. Mino time decouples the radial and polar motion of a particle and hence leads to forms more useful to estimate three fundamental frequencies, radial, polar and azimuthal motion, for the bound timelike geodesics in Kerr spacetime. This paper gives the first derivation of the analytical expressions of the fundamental frequencies. This paper also gives the first derivation of the analytical expressions of all coordinates for the bound timelike geodesics using Mino time. These analytical expressions should be useful not only to investigate physical properties of Kerr geodesics but more importantly to applications related to the estimation of gravitational waves from the extreme mass ratio inspirals.Comment: A typo in the first expression in equation 21 was fixe
    corecore