6,986 research outputs found

    Cytochalasin B: Effects on Cell Morphology, Cell Adhesion, and Mucopolysaccharide Synthesis

    Full text link

    Evidence that 5-hydroxytryptamine3 receptors mediate cytotoxic drug and radiation-evoked emesis.

    Get PDF
    The involvement of 5-hydroxytryptamine (5-HT) 5-HT3 receptors in the mechanisms of severe emesis evoked by cytotoxic drugs or by total body irradiation have been studied in ferrets. Anti-emetic compounds tested were domperidone (a dopamine antagonist), metoclopramide (a gastric motility stimulant and dopamine antagonist at conventional doses, a 5-HT3 receptor antagonist at higher doses) and BRL 24924 (a potent gastric motility stimulant and a 5-HT3 receptor antagonist). Domperidone or metoclopramide prevented apomorphine-evoked emesis, whereas BRL 24924 did not. Similar doses of domperidone did not prevent emesis evoked by cis-platin or by total body irradiation, whereas metoclopramide or BRL 24924 greatly reduced or prevented these types of emesis. Metoclopramide and BRL 24924 also prevented emesis evoked by a combination of doxorubicin and cyclophosphamide. These results are discussed in terms of a fundamental role for 5-HT3 receptors in the mechanisms mediating severely emetogenic cancer treatment therapies

    The anti-emetic potential of the 5-hydroxytryptamine3 receptor antagonist BRL 43694.

    Get PDF
    In ferrets, the selective 5-hydroxytryptamine (5-HT) 5-HT3 receptor antagonist BRL 43694 given as a single injection (0.05-0.5 mg kg-1 i.v.) before cisplatin, or by divided dose (2 x 0.005-2 x 0.5 mg kg-1 i.v.) before and after cisplatin dramatically reduced or abolished the severe cisplatin-induced vomiting. BRL 43694 also substantially reduced the vomiting induced by cyclophosphamide:doxorubicin, and prevented the trimelamol-induced emesis. The severe emesis caused by whole body exposure to X-irradiation was prevented by intravenous or oral BRL 43694. A single i.v. dose of BRL 43694 given during an emetic episode or within the peak emetic period, abolished the vomiting induced by the cytotoxic drugs and by X-irradiation, usually within 30 s. Where the induction of emesis was prevented or subsequently abolished by BRL 43694, the associated behaviour (subjectively assessed as nausea) was also absent or greatly attenuated. BRL 43694 (0.1 mg kg-1 i.v.) did not affect the emesis evoked in dogs by the dopamine agonist apomorphine. The potent anti-emetic activity of BRL 43694 is discussed in terms of potential clinical use, and of the fundamental role that 5-HT3 receptors may play in the mechanisms of nausea and vomiting

    Tissue-specific expression of high-voltage-activated dihydropyridine-sensitive L-type calcium channels

    Get PDF
    The cloning of the cDNA for the α1 subunit of L-type calcium channels revealed that at least two genes (CaCh1 and CaCh2) exist which give rise to several splice variants. The expression of mRNA for these α1 subunits and the skeletal muscle α2/δ, β and γ subunits was studied in rabbit tissues and BC3H1 cells. Nucleic-acid-hybridization studies showed that the mRNA of all subunits are expressed in skeletal muscle, brain, heart and aorta. However, the α1-, β- and γ-specific transcripts had different sizes in these tissues. Smooth muscle and heart contain different splice variants of the CaCh2 gene. The α1, β and γ mRNA are expressed together in differentiated but not in proliferating BC3H1 cells. A probe specific for the skeletal muscle α2/δ subunit did not hybridize to poly(A)-rich RNA from BC3H1 cells. These results suggest that different splice variants of the genes for the α1, β and γ subunits exist in tissues containing L-type calcium channels, and that their expression is regulated in a coordinate manner

    RNA secondary structure formation: a solvable model of heteropolymer folding

    Full text link
    The statistical mechanics of heteropolymer structure formation is studied in the context of RNA secondary structures. A designed RNA sequence biased energetically towards a particular native structure (a hairpin) is used to study the transition between the native and molten phase of the RNA as a function of temperature. The transition is driven by a competition between the energy gained from the polymer's overlap with the native structure and the entropic gain of forming random contacts. A simplified Go-like model is proposed and solved exactly. The predicted critical behavior is verified via exact numerical enumeration of a large ensemble of similarly designed sequences.Comment: 4 pages including 2 figure

    Potential role of the EPEC Translocated intimin receptor (Tir) in host apoptotic events

    Get PDF
    Apoptosis, or programmed cell death, is a well-ordered process that allows damaged or diseased cells to be removed from an organism without severe inflammatory reactions. Multiple factors, including microbial infection, can induce programmed death and trigger reactions in both host and microbial cellular pathways. Whereas an ultimate outcome is host cell death, these apoptotic triggering mechanisms may also facilitate microbial spread and prolong infection. To gain a better understanding of the complex events of host cell response to microbial infection, we investigated the molecular role of the microorganism Enteropathogenic Escherichia coli (EPEC) in programmed cell death. We report that wild type strain of EPEC, E2348/69, induced apoptosis in cultured PtK2 and Caco-2 cells, and in contrast, infections by the intracellularly localized Listeria monocytogenes did not. Fractionation and concentration of EPEC-secreted proteins demonstrated that soluble protein factors expressed by the bacteria were capable of inducing the apoptotic events in the absence of organism attachment, suggesting adherence is not required to induce host cell death. Among the known EPEC proteins secreted via the Type III secretion (TTS) system, we identified the translocated intimin receptor (Tir) in the apoptosis-inducing protein sample. In addition, host cell ectopic expression of an EPEC GFP-Tir showed mitochondrial localization of the protein and produced apoptotic effects in transfected cells. Taken together, these results suggest a potential EPEC Tirmediated role in the apoptotic signaling cascade of infected host cells

    Repositioning the Catalytic Triad Aspartic Acid of Haloalkane Dehalogenase: Effects on Stability, Kinetics, and Structure

    Get PDF
    Haloalkane dehalogenase (DhlA) catalyzes the hydrolysis of haloalkanes via an alkyl-enzyme intermediate. The covalent intermediate, which is formed by nucleophilic substitution with Asp124, is hydrolyzed by a water molecule that is activated by His289. The role of Asp260, which is the third member of the catalytic triad, was studied by site-directed mutagenesis. Mutation of Asp260 to asparagine resulted in a catalytically inactive D260N mutant, which demonstrates that the triad acid Asp260 is essential for dehalogenase activity. Furthermore, Asp260 has an important structural role, since the D260N enzyme accumulated mainly in inclusion bodies during expression, and neither substrate nor product could bind in the active-site cavity. Activity for brominated substrates was restored to D260N by replacing Asn148 with an aspartic or glutamic acid. Both double mutants D260N+N148D and D260N+N148E had a 10-fold reduced kcat and 40-fold higher Km values for 1,2-dibromoethane compared to the wild-type enzyme. Pre-steady-state kinetic analysis of the D260N+N148E double mutant showed that the decrease in kcat was mainly caused by a 220-fold reduction of the rate of carbon-bromine bond cleavage and a 10-fold decrease in the rate of hydrolysis of the alkyl-enzyme intermediate. On the other hand, bromide was released 12-fold faster and via a different pathway than in the wild-type enzyme. Molecular modeling of the mutant showed that Glu148 indeed could take over the interaction with His289 and that there was a change in charge distribution in the tunnel region that connects the active site with the solvent. On the basis of primary structure similarity between DhlA and other α/β-hydrolase fold dehalogenases, we propose that a conserved acidic residue at the equivalent position of Asn148 in DhlA is the third catalytic triad residue in the latter enzymes.
    corecore