5,875 research outputs found
Ultraviolet and Infrared Divergences in Implicit Regularization: a Consistent Approach
Implicit Regularization is a 4-dimensional regularization initially conceived
to treat ultraviolet divergences. It has been successfully tested in several
instances in the literature, more specifically in those where Dimensional
Regularization does not apply. In the present contribution we extend the method
to handle infrared divergences as well. We show that the essential steps which
rendered Implicit Regularization adequate in the case of ultraviolet
divergences have their counterpart for infrared ones. Moreover we show that a
new scale appears, typically an infrared scale which is completely independent
of the ultraviolet one. Examples are given.Comment: 9 pages, version to appear in Mod. Phys. Lett.
Conductivity of Coulomb interacting massless Dirac particles in graphene: Regularization-dependent parameters and symmetry constraints
We compute the Coulomb correction to the a. c. conductivity of
interacting massless Dirac particles in graphene in the collisionless limit
using the polarization tensor approach in a regularization independent
framework. Arbitrary parameters stemming from differences between
logarithmically divergent integrals are fixed on physical grounds exploiting
only spatial rotational invariance of the model which amounts to
transversality of the polarization tensor. Consequently is
unequivocally determined to be within this effective model. We
compare our result with explicit regularizations and discuss the origin of
others results for found in the literature
Investigation of varying gray scale levels for remote manipulation
A study was conducted to investigate the effects of variant monitor gray scale levels and workplace illumination levels on operators' ability to discriminate between different colors on a monochrome monitor. It was determined that 8-gray scale viewing resulted in significantly worse discrimination performance compared to 16- and 32-gray scale viewing and that there was only a negligible difference found between 16 and 32 shades of gray. Therefore, it is recommended that monitors used while performing remote manipulation tasks have 16 or above shades of gray since this evaluation has found levels lower than this to be unacceptable for color discrimination task. There was no significant performance difference found between a high and a low workplace illumination condition. Further analysis was conducted to determine which specific combinations of colors can be used in conjunction with each other to ensure errorfree color coding/brightness discrimination performance while viewing a monochrome monitor. It was found that 92 three-color combination and 9 four-color combinations could be used with 100 percent accuracy. The results can help to determine which gray scale levels should be provided on monochrome monitors as well as which colors to use to ensure the maximal performance of remotely-viewed color discrimination/coding tasks
Hubbard-model description of the high-energy spin-spectral-weight distribution in La(2)CuO(4)
The spectral-weight distribution in recent neutron scattering experiments on
the parent compound LaCuO (LCO), which are limited in energy range to
about 450\,meV, is studied in the framework of the Hubbard model on the square
lattice with effective nearest-neighbor transfer integral and on-site
repulsion . Our study combines a number of numerical and theoretical
approaches, including, in addition to standard treatments, density matrix
renormalization group calculations for Hubbard cylinders and a suitable spinon
approach for the spin excitations. Our results confirm that the
magnitude suitable to LCO corresponds to intermediate values smaller than
the bandwidth , which we estimate to be eV for
. This confirms the unsuitability of the conventional linear
spin-wave theory. Our theoretical studies provide evidence for the occurrence
of ground-state d-wave spinon pairing in the half-filled Hubbard model on the
square lattice. This pairing applies only to the rotated-electron spin degrees
of freedom, but it could play a role in a possible electron d-wave pairing
formation upon hole doping. We find that the higher-energy spin spectral weight
extends to about 566 meV and is located at and near the momentum .
The continuum weight energy-integrated intensity vanishes or is extremely small
at momentum . This behavior of this intensity is consistent with that
of the spin waves observed in recent high-energy neutron scattering
experiments, which are damped at the momentum . We suggest that future
LCO neutron scattering experiments scan the energies between 450 meV and 566
meV and momenta around .Comment: 23 pages, 5 figure
Growth and reproduction of the understory palm Geonama schottiana mart. in the gallery forest in central Brazil.
Made available in DSpace on 2018-05-30T00:53:52Z (GMT). No. of bitstreams: 1
SP19638ID30934.pdf: 280172 bytes, checksum: 2cd7a430089dc562877434835c3a1fee (MD5)
Previous issue date: 2009-02-0
- …