15 research outputs found

    Viral sequence integration into introns of chemokine receptor genes

    Get PDF
    Viral DNA sequences are able to integrate into the non-coding DNA sections of the genome of human cells which have been infected, either spontaneously or experimentally. We have made a data-base search for integration events of non-endogenous viruses into the introns of chemokine receptor sequences. A BLAST search of all viral DNA sequences, using the intronic sequences as "Query," returned several significant alignments. However, due to the high reiteration rate of the non-coding sequences in the human genome, it became necessary to re-examine the individual alignments to verify whether the virus-flanking intronic sequence was really located in a chemokine receptor intron. We found only one unquestionable event of viral insertion of a section of a long terminal repeat of the murine leukemia virus within the first intron of the CC chemokine receptor 7 gene. Possible biological effects of such an insertion are discussed. Further experimental or clinical research could demonstrate the occurrence of other intronic viral insertions in human chemokine receptor genes

    Is The Cerebellum Involved In The Nervous Control Of The Immune System Function?

    No full text
    According to the views of the psychoneuroendocrinoimmunology, many interactions exist among nervous, endocrine and immune system whose purpose is to achieve adaptive measures restoring an internal equilibrium (homeostasis) following stress conditions. The center where these interactions converge is the hypothalamus. This is a center of the autonomic nervous system that controls the visceral systems, including the immune system, through both nervous and neuroendocrine mechanisms. The nervous mechanisms are based on nervous circuits that bidirectionally connect hypothalamic neurons and neurons of the sympathetic and parasympathetic system; the neuroendocrine mechanisms are based on the release by neurosecretory hypothalamic neurons of hormones that target endocrine cells and on the feedback effects of the hormones secreted by these endocrine cells on the same hypothalamic neurons. Moreover, the hypothalamus is an important subcortical center of the limbic system that control through nervous and neuroendocrine mechanisms the areas of the cerebral cortex where the psychic functions controlling mood, emotions, anxiety and instinctive behaviors take place. Accordingly, various studies conducted in the last decades have indicated that hypothalamic diseases may be associated with immune and/or psychic disorders

    Distribution of Multilayered Fiber Terminals in the Human Cerebellar Cortex. Visualization by Immunohistochemistry for Histamine

    No full text
    The distribution of histamine in the human cerebellar cortex was studied by light microscope immunohistochemistry using a rabbit polyclonal antibody anti-histamine. In all layers of the cerebellar cortex, were revealed punctate immunoreactive elements related to putative histaminergic nerve terminals. These findings provide insights into the existence of a histaminergic system in the human cerebellar cortex, presumably involved in the cerebrocerebellar circuit, the feedback circuit through which the cerebellu
    corecore