15 research outputs found
The prevalence and risk of immune restoration disease in HIV-infected patients treated with highly active antiretroviral therapy
Background It is becoming increasingly clear that, during successful highly active antiretroviral therapy (HAART), a proportion of treated patients develop opportunistic infections (OIs), referred to in this setting as immune restoration disease (IRD). We examined the risk of developing IRD in HAART-treated HIV-infected patients. Methods A retrospective study of a cohort including all 389 patients treated with HAART between I January 1998 and 31 May 2004 in our HIV unit was performed to evaluate the occurrence of and risk factors for IRD during HAART. Baseline and follow-up values of CD4 T-cell counts and plasma viral loads (pVLs) were compared to assess the success of HAART. Results During successful HAART (significant increase in CD4 T-cell counts and decrease in pVL), at least one IRD episode occurred in 65 patients (16.7%). The median time to IRD was 4.6 months (range 212 months). IRDs included dermatomal herpes zoster (26 patients), pulmonary tuberculosis (four patients), tuberculous exudative pericarditis (two patients), tuberculous lymphadenitis (two patients), cerebral toxoplasmosis (one patient), progressive multifocal leucoencephalopathy (PML) (one patient), inflamed molluscum (one patient), inflamed Candida albicans angular cheilitis (three patients), genital herpes simplex (two patients), tinea corporis (two patients), cytomegalovirus (CMV) retinitis (two patients), CMV vitritis (one patient) and hepatitis B (three patients) or C (fifteen patients). A baseline CD4 T-cell count below 100 cells/mu L was shown to be the single predictor [odds ratio (OR) 2.5, 95% confidence interval (CI) 0.9-6.4] of IRD, while a CD4 T-cell count increase to gt 400 cells/mu L, but not undetectable pVL, was a negative predictor of IRD (OR 0.3, 95% CI 0.1-0.8). Conclusions To avoid IRD in advanced patients, HAART should be initiated before the CD4 T-cell count falls below 100 cells/mu L
Differential Virulence Gene Expression of Group A Streptococcus Serotype M3 in Response to Co-Culture with Moraxella catarrhalis
Streptococcus pyogenes (group A Streptococcus, GAS) and Moraxella catarrhalis are important colonizers and (opportunistic) pathogens of the human respiratory tract. However, current knowledge regarding colonization and pathogenic potential of these two pathogens is based on work involving single bacterial species, even though the interplay between respiratory bacterial species is increasingly important in niche occupation and the development of disease. Therefore, to further define and understand polymicrobial species interactions, we investigated whether gene expression (and hence virulence potential) of GAS would be affected upon co-culture with M. catarrhalis. For co-culture experiments, GAS and M. catarrhalis were cultured in Todd-Hewitt broth supplemented with 0.2% yeast extract (THY) at 37Β°C with 5% CO2aeration. Each strain was grown in triplicate so that triplicate experiments could be performed. Bacterial RNA was isolated, cDNA synthesized, and microarray transcriptome expression analysis performed. We observed significantly increased (β₯4-fold) expression for genes playing a role in GAS virulence such as hyaluronan synthase (hasA), streptococcal mitogenic exotoxin Z (smeZ) and IgG endopeptidase (ideS). In contrast, significantly decreased (β₯4-fold) expression was observed in genes involved in energy metabolism and in 12 conserved GAS two-component regulatory systems. This study provides the first evidence that M. catarrhalis increases GAS virulence gene expression during co-culture, and again shows the importance of polymicrobial infections in directing bacterial virulence
A Functional Genomics Approach to Establish the Complement of Carbohydrate Transporters in Streptococcus pneumoniae
The aerotolerant anaerobe Streptococcus pneumoniae is part of the normal nasopharyngeal microbiota of humans and one of the most important invasive pathogens. A genomic survey allowed establishing the occurrence of twenty-one phosphotransferase systems, seven carbohydrate uptake ABC transporters, one sodiumβΆsolute symporter and a permease, underlining an exceptionally high capacity for uptake of carbohydrate substrates. Despite high genomic variability, combined phenotypic and genomic analysis of twenty sequenced strains did assign the substrate specificity only to two uptake systems. Systematic analysis of mutants for most carbohydrate transporters enabled us to assign a phenotype and substrate specificity to twenty-three transport systems. For five putative transporters for galactose, pentoses, ribonucleosides and sulphated glycans activity was inferred, but not experimentally confirmed and only one transport system remains with an unknown substrate and lack of any functional annotation. Using a metabolic approach, 80% of the thirty-two fermentable carbon substrates were assigned to the corresponding transporter. The complexity and robustness of sugar uptake is underlined by the finding that many transporters have multiple substrates, and many sugars are transported by more than one system. The present work permits to draw a functional map of the complete arsenal of carbohydrate utilisation proteins of pneumococci, allows re-annotation of genomic data and might serve as a reference for related species. These data provide tools for specific investigation of the roles of the different carbon substrates on pneumococcal physiology in the host during carriage and invasive infection
Genomic evidence for the evolution of Streptococcus equi : host restriction, increased virulence, and genetic exchange with human pathogens
The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A(2) toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci.Publisher PDFPeer reviewe