10,333 research outputs found

    Solid-state synthesis and characterization of σ-Alkane complexes, [Rh(L2)(η2,η2-C7H12)][BArF4] (L2 = bidentate chelating phosphine)

    Get PDF
    The use of solid/gas and single-crystal to single-crystal synthetic routes is reported for the synthesis and characterization of a number of σ-alkane complexes: [Rh(R2P(CH2)nPR2)(η2,η2-C7H12)][BArF4]; R = Cy, n = 2; R = iPr, n = 2,3; Ar = 3,5-C6H3(CF3)2. These norbornane adducts are formed by simple hydrogenation of the corresponding norbornadiene precursor in the solid state. For R = Cy (n = 2), the resulting complex is remarkably stable (months at 298 K), allowing for full characterization using single-crystal X-ray diffraction. The solid-state structure shows no disorder, and the structural metrics can be accurately determined, while the 1H chemical shifts of the Rh···H–C motif can be determined using solid-state NMR spectroscopy. DFT calculations show that the bonding between the metal fragment and the alkane can be best characterized as a three-center, two-electron interaction, of which σCH → Rh donation is the major component. The other alkane complexes exhibit solid-state 31P NMR data consistent with their formation, but they are now much less persistent at 298 K and ultimately give the corresponding zwitterions in which [BArF4]− coordinates and NBA is lost. The solid-state structures, as determined by X-ray crystallography, for all these [BArF4]− adducts are reported. DFT calculations suggest that the molecular zwitterions within these structures are all significantly more stable than their corresponding σ-alkane cations, suggesting that the solid-state motif has a strong influence on their observed relative stabilities

    Kinetics of oxygen uncoupling of a copper based oxygen carrier

    Get PDF
    Here, an oxygen carrier consisting of 60 wt% CuO supported on a mixture of Al_2O_ 3 and CaO (23 wt% and 17 wt% respectively) was synthesised by wet-mixing powdered CuO, Al(OH)_3 and Ca(OH)_2, followed by calcination at 1000⁰C. Its suitability for chemical looping with oxygen uncoupling (CLOU) was investigated. After 25 repeated redox cycles in either a thermogravimetric analyser (TGA) or a laboratory-scale fluidised bed, (with 5 vol% H_2 in N_2 as the fuel, and air as the oxidant) no significant change in either the oxygen uncoupling capacity or the overall oxygen availability of the carrier was found. In the TGA, it was found that the rate of oxygen release from the material was controlled by intrinsic chemical kinetics and external transfer of mass from the surface of the particles to the bulk gas. By modelling the various resistances, values of the rate constant for the decomposition were obtained. The activation energy of the reaction was found to be 59.7 kJ/mol (with a standard error of 5.6 kJ/mol) and the corresponding pre-exponential factor was 632 m^3/mol/s. The local rate of conversion within a particle was assumed to occur either (i) by homogeneous chemical reaction, or (ii) in uniform, non-porous grains, each reacting as a kinetically-controlled shrinking core. Upon cross validation against a batch fluidised bed experiment, the homogeneous reaction mode l was found to be more plausible. By accurately accounting for the various artefacts (e.g. mass transfer resistances) present in both TGA and Fluidised bed experiments, it was possible to extract a consistent set of kinetic parameters which reproduced the rates of oxygen release in both experiments.This work is supported by the Engineering and Physical Sciences Research Council (EPSRC grant EP/I010912/1) and The Cambridge Commonwealth, European & International Trust as well as Selwyn College, University of Cambridge. The authors would also like to thank Mohammad Ismail for the XRD analysis and Zlatko Saracevic for the nitrogen adsorption analysis.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.apenergy.2015.10.00

    Use of a Chemical-Looping Reaction to Determine the Residence Time Distribution of Solids in a Circulating Fluidized Bed

    Get PDF
    The residence time distribution (RTD) of solids in various sections of a circulating fluidized bed (CFB) is of great importance for design and operation but is often difficult to determine experimentally. A noninvasive method is described, for which the RTD was derived from temporal measurements of the temperature following the initiation of a chemical-looping reaction. To demonstrate the method, a CuO-based oxygen carrier was used in a small-scale CFB, and measurements were made in the fuel reactor, operated as a bubbling fluidized bed. The measurements were fitted to the tanks-in-series model, modified to account for heat losses from the reactor. There was excellent agreement between the model and the experiment. Limitations and further improvements of the method are discussed, also with respect to larger reactors.This work is supported by the Engineering and Physical Sciences Research Council (EPSRC Grant EP/I010912/1).This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/ente.20160014

    Sensitivity of chemical-looping combustion to particle reaction kinetics

    Get PDF
    A simple simulation for chemical-looping combustion (CLC) is discussed: two, coupled fluidised reactors with steady circulation of particles of oxygen carrier between them. In particular, the sensitivity of CLC to different particle kinetics is investigated. The results show that the system is relatively insensitive to different kinetics when the mean residence time of particles in each reactor is greater than the time taken for them to react completely.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S0009250916302779
    corecore