14 research outputs found
Extended Seiberg-Witten Theory and Integrable Hierarchy
The prepotential of the effective N=2 super-Yang-Mills theory perturbed in
the ultraviolet by the descendents of the single-trace chiral operators is
shown to be a particular tau-function of the quasiclassical Toda hierarchy. In
the case of noncommutative U(1) theory (or U(N) theory with 2N-2 fundamental
hypermultiplets at the appropriate locus of the moduli space of vacua) or a
theory on a single fractional D3 brane at the ADE singularity the hierarchy is
the dispersionless Toda chain. We present its explicit solutions. Our results
generalize the limit shape analysis of Logan-Schepp and Vershik-Kerov, support
the prior work hep-th/0302191 which established the equivalence of these N=2
theories with the topological A string on CP^1 and clarify the origin of the
Eguchi-Yang matrix integral. In the higher rank case we find an appropriate
variant of the quasiclassical tau-function, show how the Seiberg-Witten curve
is deformed by Toda flows, and fix the contact term ambiguity.Comment: 49 page
An alternative approach to the construction of Schur-Weyl transform
We propose an alternative approach for the construction of the unitary matrix
which performs generalized unitary rotations of the system consisting of
independent identical subsystems (for example spin system). This matrix, when
applied to the system, results in a change of degrees of freedom, uncovering
the information hidden in non-local degrees of freedom. This information can be
used, inter alia, to study the structure of entangled states, their
classification and may be useful for construction of quantum algorithms.Comment: 6 page
Affine crystal structure on rigged configurations of type D_n^(1)
Extending the work arXiv:math/0508107, we introduce the affine crystal action
on rigged configurations which is isomorphic to the Kirillov-Reshetikhin
crystal B^{r,s} of type D_n^(1) for any r,s. We also introduce a representation
of B^{r,s} (r not equal to n-1,n) in terms of tableaux of rectangular shape r x
s, which we coin Kirillov-Reshetikhin tableaux (using a non-trivial analogue of
the type A column splitting procedure) to construct a bijection between
elements of a tensor product of Kirillov-Reshetikhin crystals and rigged
configurations.Comment: 26 pages, 3 figures. (v3) corrections in the proof reading. (v2) 26
pages; examples added; introduction revised; final version. (v1) 24 page
The arctic curve of the domain-wall six-vertex model
The problem of the form of the `arctic' curve of the six-vertex model with
domain wall boundary conditions in its disordered regime is addressed. It is
well-known that in the scaling limit the model exhibits phase-separation, with
regions of order and disorder sharply separated by a smooth curve, called the
arctic curve. To find this curve, we study a multiple integral representation
for the emptiness formation probability, a correlation function devised to
detect spatial transition from order to disorder. We conjecture that the arctic
curve, for arbitrary choice of the vertex weights, can be characterized by the
condition of condensation of almost all roots of the corresponding saddle-point
equations at the same, known, value. In explicit calculations we restrict to
the disordered regime for which we have been able to compute the scaling limit
of certain generating function entering the saddle-point equations. The arctic
curve is obtained in parametric form and appears to be a non-algebraic curve in
general; it turns into an algebraic one in the so-called root-of-unity cases.
The arctic curve is also discussed in application to the limit shape of
-enumerated (with ) large alternating sign matrices. In
particular, as the limit shape tends to a nontrivial limiting curve,
given by a relatively simple equation.Comment: 39 pages, 2 figures; minor correction
Brauer algebras with parameter n = 2 acting on tensor space
Let k be a field of prime characteristic p and E an n-dimensional vector space. We completely describe the tensor space E-r viewed as a module for the Brauer algebra B (k) (r,delta) with parameter delta=2 and n=2. This description shows that while the tensor space still affords Schur-Weyl duality, it typically is not filtered by cell modules, and thus will not be equal to a direct sum of Young modules as defined in Hartmann and Paget (Math Z 254:333-357, 2006). This is very different from the situation for group algebras of symmetric groups. Other results about the representation theory of these Brauer algebras are obtained, including a new description of a certain class of irreducible modules in the case when the characteristic is two