51 research outputs found

    Stabilization of the surface CDW order parameter by long-range Coulomb interaction

    Full text link
    We study theoretically formation of two-dimensional (2D) charge density wave (CDW) in a system of conducting chains at the surface of an insulator due to interaction of quasi 1D surface electrons with phonons. We show that the unscreened long-range Coloumb interaction between the charges induced by fluctuations of the CDW phase stabilizes the finite order parameter value at finite temperatures, and thus the long-range order (LRO) exists. In the case of screened Coloumb interaction the phase fluctuations suppress the phase transition, but decay of the order parameter is rather slow, it obeys a power-law rγ \propto r^{-\gamma} with small exponent $\gamma

    Stability of Driven Josephson Vortex Lattice in Layered Superconductors Revisited

    Full text link
    We analytically study stability of sliding lattice of Josephson vortices driven by a transport current in the stack direction in strong in-plane magnetic field. In contrast to recent findings we obtain that there are no diverse configurations of stable vortex lattices, and, hence, the stable sliding vortex lattice can not be selected by boundary conditions. We find that only the triangular (rhombic) lattice can be stable, its stability being limited by a critical velocity value. At higher velocities there are no simple stable lattices with single flux line per unit cell. Oblique sliding lattices are found to be never stable. Instability of such lattices is revealed beyond the linear approximation in perturbations of the lattice.Comment: 11 pages, 2 figures, RevTeX 4, Submitted to Phys. Rev.

    Effective action approach and Carlson-Goldman mode in d-wave superconductors

    Full text link
    We theoretically investigate the Carlson-Goldman (CG) mode in two-dimensional clean d-wave superconductors using the effective ``phase only'' action formalism. In conventional s-wave superconductors, it is known that the CG mode is observed as a peak in the structure factor of the pair susceptibility S(Ω,K)S(\Omega, \mathbf{K}) only just below the transition temperature T_c and only in dirty systems. On the other hand, our analytical results support the statement by Y.Ohashi and S.Takada, Phys.Rev.B {\bf 62}, 5971 (2000) that in d-wave superconductors the CG mode can exist in clean systems down to the much lower temperatures, T0.1TcT \approx 0.1 T_c. We also consider the manifestations of the CG mode in the density-density and current-current correlators and discuss the gauge independence of the obtained results.Comment: 23 pages, RevTeX4, 12 EPS figures; final version to appear in PR

    Field Dependence of the Josephson Plasma Resonance in Layered Superconductors with Alternating Junctions

    Full text link
    The Josephson plasma resonance in layered superconductors with alternating critical current densities is investigated in a low perpendicular magnetic field. In the vortex solid phase the current densities and the squared bare plasma frequencies decrease linearly with the magnetic field. Taking into account the coupling due to charge fluctuations on the layers, we extract from recent optical data for SmLa_{1-x} Sr_x CuO_{4-delta} the Josephson penetration length lambda_{ab} approximately 1100 A parallel to the layers at T=10 K.Comment: 5 pages, 6 eps-figures, final version with minor misprints correcte

    Strong Effects of Weak Localization in Charge Density Wave/Normal Metal Hybrids

    Full text link
    Collective transport through a multichannel disordered conductor in contact with charge-density-wave electrodes is theoretically investigated. The statistical distribution function of the threshold potential for charge-density wave sliding is calculated by random matrix theory. In the diffusive regime weak localization has a strong effect on the sliding motion.Comment: To be published in Physical Review

    Dynamic structure selection and instabilities of driven Josephson lattice in high-temperature superconductors

    Full text link
    We investigate the dynamics of the Josephson vortex lattice in layered high-Tc_{c} superconductors at high magnetic fields. Starting from coupled equations for superconducting phases and magnetic field we derive equations for the relative displacements [phase shifts] between the planar Josephson arrays in the layers. These equations reveal two families of steady-state solutions: lattices with constant phase shifts between neighboring layers, starting from zero for a rectangular configuration to π\pi for a triangular configuration, and double-periodic lattices. We find that the excess Josephson current is resonantly enhanced when the Josephson frequency matches the frequency of the plasma mode at the wave vector selected by the lattice structure. The regular lattices exhibit several kinds of instabilities. We find stability regions of the moving lattice in the plane lattice structure - Josephson frequency. A specific lattice structure at given velocity is selected uniquely by boundary conditions, which are determined by the reflection properties of electromagnetic waves generated by the moving lattice. With increase of velocity the moving configuration experiences several qualitative transformations. At small velocities the regular lattice is stable and the phase shift between neighboring layers smoothly decreases with increase of velocity, starting from π\pi for a static lattice. At the critical velocity the lattice becomes unstable. At even higher velocity a regular lattice is restored again with the phase shift smaller than π/2\pi/2. With increase of velocity, the structure evolves towards a rectangular configuration.Comment: 28 pages, 12 figures, submitted to Phys. Rev.

    Transverse optical Josephson plasmons, equations of motion

    Get PDF
    A detailed calculation is presented of the dielectric function in superconducttors consisting of two Josephson coupled superconducting layers per unit cell, taking into account the effect of finite compressibility of the electron fluid. From the model it follows, that two longitudinal, and one transverse optical Josephson plasma resonance exist in these materials, for electric field polarization perpendicular to the planes. The latter mode appears as a resonance in the transverse dielectric function, and it couples directly to the electrical field vector of infrared radiation. A shift of all plasma frequencies, and a reduction of the intensity of the transverse optical Josephson plasmon is shown to result from the finite compressibility of the electron fluid.Comment: 17 pages, ReVTeX, 7 figures in eps forma

    Exact Calculation of the Vortex-Antivortex Interaction Energy in the Anisotropic 3D XY-model

    Full text link
    We have developed an exact method to calculate the vortex-antivortex interaction energy in the anisotropic 3D-XY model. For this calculation, dual transformation which is already known for the 2D XY-model was extended. We found an explicit form of this interaction energy as a function of the anisotropic ratio and the separation rr between the vortex and antivortex located on the same layer. The form of interaction energy is lnr\ln r at the small rr limi t but is proportional to rr at the opposite limit. This form of interaction energ y is consistent with the upper bound calculation using the variational method by Cataudella and Minnhagen.Comment: REVTeX 12 pages, In print for publication in Phys. Rev.

    Optical Properties of Layered Superconductors near the Josephson Plasma Resonance

    Full text link
    We study the optical properties of crystals with spatial dispersion and show that the usual Fresnel approach becomes invalid near frequencies where the group velocity of the wave packets inside the crystal vanishes. Near these special frequencies the reflectivity depends on the atomic structure of the crystal provided that disorder and dissipation are very low. This is demonstrated explicitly by a detailed study of layered superconductors with identical or two different alternating junctions in the frequency range near the Josephson plasma resonance. Accounting for both inductive and charge coupling of the intrinsic junctions, we show that multiple modes are excited inside the crystal by the incident light, determine their relative amplitude by the microscopic calculation of the additional boundary conditions and finally obtain the reflectivity. Spatial dispersion also provides a novel method to stop light pulses, which has possible applications for quantum information processing and the artificial creation of event horizons in a solid.Comment: 25 pages, 20 figures, submitted to Phys. Rev.

    Is the Luttinger liquid a new state of matter?

    Full text link
    We are demonstrating that the Luttinger model with short range interaction can be treated as a type of Fermi liquid. In line with the main dogma of Landau's theory one can define a fermion excitation renormalized by interaction and show that in terms of these fermions any excited state of the system is described by free particles. The fermions are a mixture of renormalized right and left electrons. The electric charge and chirality of the Landau quasi-particle is discussed.Comment: paper 10 pages. This version of the paper will be published in Foundations of Physic
    corecore