34 research outputs found

    Deformation of a Peridynamic Bar

    Full text link

    Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces

    No full text
    Some materials may naturally form discontinuities such as cracks as a result of deformation. As an aid to the modeling of such materials, a new framework for the basic equations of continuum mechanics, called the "peridynamic" formulation, is proposed. The propagation of linear stress waves in the new theory is discussed, and wave dispersion relations are derived. Material stability and its connection with wave propagation is investigated. It is demonstrated by an example that the reformulated approach permits the solution of fracture problems using the same equations either on or off the crack surface or crack tip. This is an advantage for modeling problems in which the location of a crack is not known in advance

    Ordinary State-Based Peridynamic Material Constants

    No full text

    Impact damage assessment by using peridynamic theory

    No full text
    This study presents an application of peridynamic theory for predicting residual strength of impact damaged building components by considering a reinforced panel subjected to multiple load paths. The validity of the approach is established first by simulating a controlled experiment resulting in mixed-mode fracture of concrete. The agreement between the PD prediction and the experimentally observed behavior is remarkable especially considering the simple material model used for the concrete. Subsequently, the PD simulation concerns damage assessment and residual strength of a reinforced panel under compression after impact due to a rigid penetrator
    corecore