639 research outputs found
Phase diagram of the antiferromagnetic XY model in two dimensions in a magnetic field
The phase diagram of the quasi-two-dimensional easy-plane antiferromagnetic
model, with a magnetic field applied in the easy plane, is studied using the
self-consistent harmonic approximation. We found a linear dependence of the
transition temperature as a function of the field for large values of the
field. Our results are in agreement with experimental data for the spin-1
honeycomb compound BaNi_2V_2O_3Comment: 3 page
Devil's staircase of incompressible electron states in a nanotube
It is shown that a periodic potential applied to a nanotube can lock
electrons into incompressible states. Depending on whether electrons are weakly
or tightly bound to the potential, excitation gaps open up either due to the
Bragg diffraction enhanced by the Tomonaga - Luttinger correlations, or via
pinning of the Wigner crystal. Incompressible states can be detected in a
Thouless pump setup, in which a slowly moving periodic potential induces
quantized current, with a possibility to pump on average a fraction of an
electron per cycle as a result of interactions.Comment: 4 pages, 1 figure, published versio
Mixed Heisenberg Chains. I. The Ground State Problem
We consider a mechanism for competing interactions in alternating Heisenberg
spin chains due to the formation of local spin-singlet pairs. The competition
of spin-1 and spin-0 states reveals hidden Ising symmetry of such alternating
chains.Comment: 7 pages, RevTeX, 4 embedded eps figures, final versio
Plasma Resonance in Layered Normal Metals and Superconductors
A microscopic theory of the plasma resonance in layered metals is presented.
It is shown that electron-impurity scattering can suppress the plasma resonance
in the normal state and sharpen it in the superconducting state. Analytic
properties of the conductivity for the electronic transport perpendicular to
the layers are investigated. The dissipative part of the electromagnetic
response in c-direction has been found to depend on frequency in a highly
non-trivial manner. This sort of behavior cannot be incorporated in the widely
used phenomenological Gorter-Kazimir model.Comment: 34 pages including 12 figures in uuencoded.file. A revised version.
Several formulas and a number of misprints are corrected. A problem with
printing of figures is fixe
Thermodynamics of Two - Band Superconductors: The Case of MgB
Thermodynamic properties of the multiband superconductor MgB have often
been described using a simple sum of the standard BCS expressions corresponding
to - and -bands. Although, it is \textit{a priori} not clear if
this approach is working always adequately, in particular in cases of strong
interband scattering. Here we compare the often used approach of a sum of two
independent bands using BCS-like -model expressions for the specific
heat, entropy and free energy to the solution of the full Eliashberg equations.
The superconducting energy gaps, the free energy, the entropy and the heat
capacity for varying interband scattering rates are calculated within the
framework of two-band Eliashberg theory. We obtain good agreement between the
phenomenological two-band -model with the Eliashberg results, which
delivers for the first time the theoretical verification to use the
-model as a useful tool for a reliable analysis of heat capacity data.
For the thermodynamic potential and the entropy we demonstrate that only the
sum over the contributions of the two bands has physical meaning.Comment: 27 pages, 10 figures, 1 table, submitted to Phys. Rev.
Vortex Plasma in a Superconducting Film with Magnetic Dots
We consider a superconducting film, placed upon a magnetic dot array.
Magnetic moments of the dots are normal to the film and randomly oriented. We
determine how the concentration of the vortices in the film depends on the
magnetic moment of a dot at low temperatures. The concentration of the
vortices, bound to the dots, is proportional to the density of the dots and
depends on the magnetization of a dot in a step-like way. The concentration of
the unbound vortices oscillates about a value, proportional to the magnetic
moment of the dots. The period of the oscillations is equal to the width of a
step in the concentration of the bound vortices.Comment: RevTeX, 4 page
Field-induced superconductor to insulator transition in Josephson-junction ladders
The superconductor to insulator transition is studied in a self-charging
model for a ladder of Josephson-junctions in presence of an external magnetic
field. Path integral Monte Carlo simulations of the equivalent
(1+1)-dimensional classical model are used to study the phase diagram and
critical behavior. In addition to a superconducting (vortex-free) phase, a
vortex phase can also occur for increasing magnetic field and small charging
energy. It is found that an intervening insulating phase separates the
superconducting from the vortex phases. Surprisingly, a finite-size scaling
analysis shows that the field-induced superconducting to insulator transition
is in the KT universality class even tough the external field breaks
time-reversal symmetry.Comment: 5 pages, 7 figures, to appear in Phys. Rev.
Electron properties of carbon nanotubes in a periodic potential
A periodic potential applied to a nanotube is shown to lock electrons into
incompressible states that can form a devil's staircase. Electron interactions
result in spectral gaps when the electron density (relative to a half-filled
Carbon pi-band) is a rational number per potential period, in contrast to the
single-particle case where only the integer-density gaps are allowed. When
electrons are weakly bound to the potential, incompressible states arise due to
Bragg diffraction in the Luttinger liquid. Charge gaps are enhanced due to
quantum fluctuations, whereas neutral excitations are governed by an effective
SU(4)~O(6) Gross-Neveu Lagrangian. In the opposite limit of the tightly bound
electrons, effects of exchange are unimportant, and the system behaves as a
single fermion mode that represents a Wigner crystal pinned by the external
potential, with the gaps dominated by the Coulomb repulsion. The phase diagram
is drawn using the effective spinless Dirac Hamiltonian derived in this limit.
Incompressible states can be detected in the adiabatic transport setup realized
by a slowly moving potential wave, with electron interactions providing the
possibility of pumping of a fraction of an electron per cycle (equivalently, in
pumping at a fraction of the base frequency).Comment: 21 pgs, 8 fig
- …