664 research outputs found

    Causally simple inextendible spacetimes are hole-free

    Full text link
    It is shown that causally simple inextendible spacetimes are hole-free, thus confirming the expectation that causal simplicity removes holes from spacetime. This result is optimal in the sense that causal simplicity cannot be weakened to causal continuity. Physically, it means that if there is some partial Cauchy hypersurface which, for some reason, does not fully develop its influence, then there is some discontinuity in the causal relation.Comment: Revtex4, 9 pages. v2: minor correction

    Soluble Models of Strongly Interacting Ultracold Gas Mixtures in Tight Waveguides

    Full text link
    A generalized Fermi-Bose mapping method is used to determine the exact ground states of several models of mixtures of strongly interacting ultracold gases in tight waveguides, which are generalizations of the Tonks-Girardeau (TG) gas (1D Bose gas with point hard cores) and fermionic Tonks-Girardeau (FTG) gas (1D spin-aligned Fermi gas with infinitely strong zero-range attractions). We detail the case of a Bose-Fermi mixture with TG boson-boson (BB) and boson-fermion (BF) interactions. Exact results are given for density profiles in a harmonic trap, single-particle density matrices, momentum distributions, and density-density correlations. Since the ground state is highly degenerate, we analyze the splitting of the ground manifold for large but finite BB and BF repulsions.Comment: Revised to discuss splitting of degenerate ground manifold for large but finite BB and BF repulsions; accepted by PR

    Temperature-dependent density profiles of trapped boson-fermion mixtures

    Full text link
    We present a semiclassical three-fluid model for a Bose-condensed mixture of interacting Bose and Fermi gases confined in harmonic traps at finite temperature. The model is used to characterize the experimentally relevant behaviour of the equilibrium density profile of the fermions with varying composition and temperature across the onset of degeneracy, for coupling strengths relevant to a mixture of 39^{39}K and 40^{40}K atoms.Comment: 9 pages, 2 postscript figures, accepted for publication in Eur. Phys. Jour.

    Linear density response in the random phase approximation for confined Bose vapours at finite temperature

    Full text link
    A linear response framework is set up for the evaluation of collective excitations in a confined vapour of interacting Bose atoms at finite temperature. Focusing on the currently relevant case of contact interactions between the atoms, the theory is developed within a random phase approximation with exchange. This approach is naturally introduced in a two-fluid description by expressing the density response of both the condensate and the non-condensate in terms of the response of a Hartree-Fock reference gas to the selfconsistent Hartree-Fock potentials. Such an approximate account of correlations (i) preserves an interplay between the condensate and the non-condensate through off-diagonal components of the response, which instead vanish in the Hartree-Fock-Bogolubov approximation; and (ii) yields a common resonant structure for the four partial response functions. The theory reduces to the temperature-dependent Hartree-Fock-Bogolubov-Popov approximation for the fluctuations of the condensate when its coupling with the density fluctuations of the non-condensate is neglected. Analytic results are presented which are amenable to numerical calculations and to inclusion of damping rates.Comment: 14 pages. To appear on J. Phys. : Condens. Matte

    Bosonization, Pairing, and Superconductivity of the Fermionic Tonks-Girardeau Gas

    Full text link
    We determine some exact static and time-dependent properties of the fermionic Tonks-Girardeau (FTG) gas, a spin-aligned one-dimensional Fermi gas with infinitely strongly attractive zero-range odd-wave interactions. We show that the two-particle reduced density matrix exhibits maximal off-diagonal long-range order, and on a ring an FTG gas with an even number of atoms has a highly degenerate ground state with quantization of Coriolis rotational flux and high sensitivity to rotation and to external fields and accelerations. For a gas initially under harmonic confinement we show that during an expansion the momentum distribution undergoes a "dynamical bosonization", approaching that of an ideal Bose gas without violating the Pauli exclusion principle.Comment: v3: 4 pages, 2 figures, revtex4. Section on the fermionic TG gas on a ring revised, emphasizing degeneracy of ground state for even N and resultant high sensitivity to external fields. Submitted to PR

    Kinetic energy of a trapped Fermi gas interacting with a Bose-Einstein condensate

    Full text link
    We study a confined mixture of bosons and fermions in the regime of quantal degeneracy, with particular attention to the effects of the interactions on the kinetic energy of the fermionic component. We are able to explore a wide region of system parameters by identifying two scaling variables which completely determine its state at low temperature. These are the ratio of the boson-fermion and boson-boson interaction strengths and the ratio of the radii of the two clouds. We find that the effect of the interactions can be sizeable for reasonable choices of the parameters and that its experimental study can be used to infer the sign of the boson-fermion scattering length. The interplay between interactions and thermal effects in the fermionic kinetic energy is also discussed.Comment: REVTEX, 8 pages, 6 figures included. Small corrections to text and figures, accepted for publication in EPJ

    On the causal properties of warped product spacetimes

    Full text link
    It is shown that the warped product spacetime P=M *_f H, where H is a complete Riemannian manifold, and the original spacetime M share necessarily the same causality properties, the only exceptions being the properties of causal continuity and causal simplicity which present some subtleties. For instance, it is shown that if diamH=+\infty, the direct product spacetime P=M*H is causally simple if and only if (M,g) is causally simple, the Lorentzian distance on M is continuous and any two causally related events at finite distance are connected by a maximizing geodesic. Similar conditions are found for the causal continuity property. Some new results concerning the behavior of the Lorentzian distance on distinguishing, causally continuous, and causally simple spacetimes are obtained. Finally, a formula which gives the Lorentzian distance on the direct product in terms of the distances on the two factors (M,g) and (H,h) is obtained.Comment: 22 pages, 2 figures, uses the package psfra

    In a distinguishing spacetime the horismos relation generates the causal relation

    Full text link
    It is proved that in a distinguishing spacetime the horismos relation E^+=J^+\I^+ generates the causal relation J^+. In other words two causally related events are joined by a chain of horismotically related events, or again, the causal relation is the smallest transitive relation containing the horismos relation. The result is sharp in the sense that distinction can not be weakened to future or past distinction. Finally, it is proved that a spacetime in which the horismos relation generates the causal relation is necessarily non-total imprisoning.Comment: 7 pages, Latex2

    Fermionization of a strongly interacting Bose-Fermi mixture in a one-dimensional harmonic trap

    Full text link
    We consider a strongly interacting one-dimensional (1D) Bose-Fermi mixture confined in a harmonic trap. It consists of a Tonks-Girardeau (TG) gas (1D Bose gas with repulsive hard-core interactions) and of a non-interacting Fermi gas (1D spin-aligned Fermi gas), both species interacting through hard-core repulsive interactions. Using a generalized Bose-Fermi mapping, we determine the exact particle density profiles, momentum distributions and behaviour of the mixture under 1D expansion when opening the trap. In real space, bosons and fermions do not display any phase separation: the respective density profiles extend over the same region and they both present a number of peaks equal to the total number of particles in the trap. In momentum space the bosonic component has the typical narrow TG profile, while the fermionic component shows a broad distribution with fermionic oscillations at small momenta. Due to the large boson-fermion repulsive interactions, both the bosonic and the fermionic momentum distributions decay as Cp4C p^{-4} at large momenta, like in the case of a pure bosonic TG gas. The coefficient CC is related to the two-body density matrix and to the bosonic concentration in the mixture. When opening the trap, both momentum distributions "fermionize" under expansion and turn into that of a Fermi gas with a particle number equal to the total number of particles in the mixture.Comment: revised version; 8 pages, 7 figure
    corecore