317 research outputs found
Quantum transport through molecular wires
We explore electron transport properties in molecular wires made of
heterocyclic molecules (pyrrole, furan and thiophene) by using the Green's
function technique. Parametric calculations are given based on the
tight-binding model to describe the electron transport in these wires. It is
observed that the transport properties are significantly influenced by (a) the
heteroatoms in the heterocyclic molecules and (b) the molecule-to-electrodes
coupling strength. Conductance () shows sharp resonance peaks associated
with the molecular energy levels in the limit of weak molecular coupling, while
they get broadened in the strong molecular coupling limit. These resonances get
shifted with the change of the heteroatoms in these heterocyclic molecules. All
the essential features of the electron transfer through these molecular wires
become much more clearly visible from the study of our current-voltage
(-) characteristics, and they provide several key informations in the
study of molecular transport.Comment: 8 pages, 4 figure
Quantum Phase Transition in a Multi-Level Dot
We discuss electronic transport through a lateral quantum dot close to the
singlet-triplet degeneracy in the case of a single conduction channel per lead.
By applying the Numerical Renormalization Group, we obtain rigorous results for
the linear conductance and the density of states. A new quantum phase
transition of the Kosterlitz-Thouless type is found, with an exponentially
small energy scale close to the degeneracy point. Below , the
conductance is strongly suppressed, corresponding to a universal dip in the
density of states. This explains recent transport measurements.Comment: 4 pages, 5 eps figures, published versio
Electron Cotunneling in a Semiconductor Quantum Dot
We report transport measurements on a semiconductor quantum dot with a small
number of confined electrons. In the Coulomb blockade regime, conduction is
dominated by cotunneling processes. These can be either elastic or inelastic,
depending on whether they leave the dot in its ground state or drive it into an
excited state, respectively. We are able to discriminate between these two
contributions and show that inelastic events can occur only if the applied bias
exceeds the lowest excitation energy. Implications to energy-level spectroscopy
are discussed.Comment: To be published in Phys. Rev. Let
Mesoscopic Coulomb Blockade in One-channel Quantum Dots
Signatures of "mesoscopic Coulomb blockade" are reported for quantum dots
with one fully transmitting point-contact lead, T1 = 1, T2 << 1. Unlike Coulomb
blockade (CB) in weak-tunneling devices (T1, T2 << 1), one-channel CB is a
mesoscopic effect requiring quantum coherence. Several distinctive features of
mesoscopic CB are observed, including a reduction in CB upon breaking
time-reversal symmetry with a magnetic field, relatively large fluctuations of
peak position as a function of magnetic field, and strong temperature
dependence on the scale of the quantum level spacing.Comment: 12 pages, including 4 figure
Kondo Effect of Quantum Dots in the Quantum Hall Regime
Quantum dots in the quantum Hall regime can have pairs of single Slater
determinant states that are degenerate in energy. We argue that these pairs of
many body states may give rise to a Kondo effect which can be mapped into an
ordinary Kondo effect in a fictitious magnetic field. We report on several
properties of this Kondo effect using scaling and numerical renormalization
group analysis. We suggest an experiment to investigate this Kondo effect.Comment: To appear in Phys. Rev. B (5 pages, 4 figures); references added;
several changes in tex
Coulomb Blockade Fluctuations in Strongly Coupled Quantum Dots
Quantum fluctuations of Coulomb blockade are investigated as a function of
the coupling to reservoirs in semiconductor quantum dots. We use fluctuations
in the distance between peaks apart to characterize both the
amplitude and correlation of peak motion. For strong coupling, peak motion is
greatly enhanced at low temperature, but does not show an increase in
peak-to-peak correlation. These effects can lead to anomalous temperature
dependence in the Coulomb valleys, similar to behavior ascribed to Kondo
physics.Comment: figures made smaller so download works. Revised, including new data.
Related papers at http://www.stanford.edu/group/MarcusLab/grouppubs.htm
Nonperturbative analysis of coupled quantum dots in a phonon bath
Transport through coupled quantum dots in a phonon bath is studied using the
recently developed real-time renormalization-group method. Thereby, the problem
can be treated beyond perturbation theory regarding the complete interaction. A
reliable solution for the stationary tunnel current is obtained for the case of
moderately strong couplings of the dots to the leads and to the phonon bath.
Any other parameter is arbitrary, and the complete electron-phonon interaction
is taken into account. Experimental results are quantitatively reproduced by
taking into account a finite extension of the wavefunctions within the dots.
Its dependence on the energy difference between the dots is derived.Comment: 8 pages, 6 figure
Conduction through a quantum dot near a singlet-triplet transition
Kondo effect in the vicinity of a singlet-triplet transition in a vertical
quantum dot is considered. This system is shown to map onto a special version
of the two-impurity Kondo model. At any value of the control parameter, the
system has a Fermi-liquid ground state. Explicit expressions for the linear
conductance as a function of the control parameter and temperature are
obtained. At T=0, the conductance reaches the unitary limit at
the triplet side of the transition, and decreases with the increasing distance
to the transition at the singlet side. At finite temperature, the conductance
exhibits a peak near the transition point
Multi-parameter scaling of the Kondo effect in quantum dots with an even number of electrons
We address a recent theoretical discrepancy concerning the Kondo effect in
quantum dots with an even number of electrons where spin-singlet and -triplet
states are nearly degenerate. We show that the discrepancy arises from the fact
that the Kondo scaling involves many parameters, which makes the results depend
on concrete microscopic models. We illustrate this by the scaling calculations
of the Kondo temperature, , as a function of the energy difference between
the singlet and triplet states . decreases with
increasing , showing a crossover from a power law with a universal
exponent to that with a nonuniversal exponent. The crossover depends on the
initial parameters of the model.Comment: 8 pages, 3 figure
Time-dependent DMRG Study on Quantum Dot under a Finite Bias Voltage
Resonant tunneling through quantum dot under a finite bias voltage at zero
temperature is investigated by using the adaptive time-dependent density matrix
renormalization group(TdDMRG) method. Quantum dot is modeled by the Anderson
Hamiltonian with the 1-D nearest-neighbor tight-binding leads. Initially the
ground state wave function is calculated with the usual DMRG method. Then the
time evolution of the wave function due to the slowly changing bias voltage
between the two leads is calculated by using the TdDMRG technique. Even though
the system size is finite, the expectation values of current operator show
steady-like behavior for a finite time interval, in which the system is
expected to resemble the real nonequilibrium steady state of the infinitely
long system. We show that from the time intervals one can obtain quantitatively
correct results for differential conductance in a wide range of bias voltage.
Finally we observe an anomalous behavior in the expectation value of the double
occupation operator at the dot as a function of
bias voltage
- …