823 research outputs found
Spherical Code Key Distribution Protocols for Qubits
Recently spherical codes were introduced as potentially more capable
ensembles for quantum key distribution. Here we develop specific key creation
protocols for the two qubit-based spherical codes, the trine and tetrahedron,
and analyze them in the context of a suitably-tailored intercept/resend attack,
both in standard form, and a ``gentler'' version whose back-action on the
quantum state is weaker. When compared to the standard unbiased basis
protocols, BB84 and six-state, two distinct advantages are found. First, they
offer improved tolerance of eavesdropping, the trine besting its counterpart
BB84 and the tetrahedron the six-state protocol. Second, the key error rate may
be computed from the sift rate of the protocol itself, removing the need to
sacrifice key bits for this purpose. This simplifies the protocol and improves
the overall key rate.Comment: 4 pages revtex, 2 figures; clarified security analysis. Final version
for publicatio
Security against eavesdropping in quantum cryptography
In this article we deal with the security of the BB84 quantum cryptography
protocol over noisy channels using generalized privacy amplification. For this
we estimate the fraction of bits needed to be discarded during the privacy
amplification step. This estimate is given for two scenarios, both of which
assume the eavesdropper to access each of the signals independently and take
error correction into account. One scenario does not allow a delay of the
eavesdropper's measurement of a measurement probe until he receives additional
classical information. In this scenario we achieve a sharp bound. The other
scenario allows a measurement delay, so that the general attack of an
eavesdropper on individual signals is covered. This bound is not sharp but
allows a practical implementation of the protocol.Comment: 11 pages including 3 figures, contains new results not contained in
my Phys. Rev. A pape
Higher Security Thresholds for Quantum Key Distribution by Improved Analysis of Dark Counts
We discuss the potential of quantum key distribution (QKD) for long distance
communication by proposing a new analysis of the errors caused by dark counts.
We give sufficient conditions for a considerable improvement of the key
generation rates and the security thresholds of well-known QKD protocols such
as Bennett-Brassard 1984, Phoenix-Barnett-Chefles 2000, and the six-state
protocol. This analysis is applicable to other QKD protocols like Bennett 1992.
We examine two scenarios: a sender using a perfect single-photon source and a
sender using a Poissonian source.Comment: 6 pages, 2 figures, v2: We obtained better results by using reverse
reconciliation as suggested by Nicolas Gisi
Quantum Cryptography Based on the Time--Energy Uncertainty Relation
A new cryptosystem based on the fundamental time--energy uncertainty relation
is proposed. Such a cryptosystem can be implemented with both correlated photon
pairs and single photon states.Comment: 5 pages, LaTex, no figure
Accumulation of entanglement in a continuous variable memory
We study the accumulation of entanglement in a memory device built out of two
continuous variable (CV) systems. We address the case of a qubit mediating an
indirect joint interaction between the CV systems. We show that, in striking
contrast with respect to registers built out of bidimensional Hilbert spaces,
entanglement superior to a single ebit can be efficiently accumulated in the
memory, even though no entangled resource is used. We study the protocol in an
immediately implementable setup, assessing the effects of the main
imperfections.Comment: 4 pages, 3 figures, RevTeX
Testing Bell's inequality with two-level atoms via population spectroscopy
We propose a feasible experimental scheme, employing methods of population
spectroscopy with two-level atoms, for a test of Bell's inequality for massive
particles. The correlation function measured in this scheme is the joint atomic
function. An inequality imposed by local realism is violated by any
entangled state of a pair of atoms.Comment: 4 pages, REVTeX, no figures. More info on
http://www.ligo.caltech.edu/~cbrif/science.htm
Scaling in the time-dependent failure of a fiber bundle with local load sharing
We study the scaling behaviors of a time-dependent fiber-bundle model with
local load sharing. Upon approaching the complete failure of the bundle, the
breaking rate of fibers diverges according to ,
where is the lifetime of the bundle, and is a quite
universal scaling exponent. The average lifetime of the bundle scales
with the system size as , where depends on the
distribution of individual fiber as well as the breakdown rule.Comment: 5 pages, 4 eps figures; to appear in Phys. Rev.
Atom-photon entanglement generation and distribution
We extend an earlier model by Law {\it et al.} \cite{law} for a cavity QED
based single-photon-gun to atom-photon entanglement generation and
distribution. We illuminate the importance of a small critical atom number on
the fidelity of the proposed operation in the strong coupling limit. Our result
points to a promisingly high purity and efficiency using currently available
cavity QED parameters, and sheds new light on constructing quantum computing
and communication devices with trapped atoms and high Q optical cavities.Comment: 7 fig
Unambiguous Discrimination Between Linearly Dependent States with Multiple Copies
A set of quantum states can be unambiguously discriminated if and only if
they are linearly independent. However, for a linearly dependent set, if C
copies of the state are available, then the resulting C particle states may
form a linearly independent set, and be amenable to unambiguous discrimination.
We obtain necessary and sufficient conditions for the possibility of
unambiguous discrimination between N states given that C copies are available
and that the single copies span a D dimensional space. These conditions are
found to be identical for qubits. We then examine in detail the linearly
dependent trine ensemble. The set of C>1 copies of each state is a set of
linearly independent lifted trine states. The maximum unambiguous
discrimination probability is evaluated for all C>1 with equal a priori
probabilities.Comment: 12 Pages RevTeX 4, 1 EPS figur
- âŠ