265 research outputs found

    A Note on Quantum Field Theories with a Minimal Length Scale

    Full text link
    The aim of this note is to address the low energy limit of quantum field theories with a minimal length scale. The essential feature of these models is that the minimal length acts as a regulator in the asymptotic high energy limit which is incorporated through an infinite series of higher order derivatives. If one investigates a perturbative expansion in inverse powers of the Planck mass, one generically obtains extra poles in the propagator, and instabilities connected with the higher order derivative Lagrangian, that are however artifacts of truncating the series

    Phenomenological Quantum Gravity

    Get PDF
    Planck scale physics represents a future challenge, located between particle physics and general relativity. The Planck scale marks a threshold beyond which the old description of spacetime breaks down and conceptually new phenomena must appear. In the last years, increased efforts have been made to examine the phenomenology of quantum gravity, even if the full theory is still unknown.Comment: To appear in Proceedings of SUSY06, the 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 200

    Multi-Particle States in Deformed Special Relativity

    Get PDF
    We investigate the properties of multi-particle states in Deformed Special Relativity (DSR). Starting from the Lagrangian formalism with an energy dependent metric, the conserved Noether current can be derived which is additive in the usual way. The integrated Noether current had previously been discarded as a conserved quantity, because it was correctly realized that it does no longer obey the DSR transformations. We identify the reason for this mismatch in the fact that DSR depends only on the extensive quantity of total four-momentum instead of the energy-momentum densities as would be appropriate for a field theory. We argue that the reason for the failure of DSR to reproduce the standard transformation behavior in the well established limits is due to the missing sensitivity to the volume inside which energy is accumulated. We show that the soccer-ball problem is absent if one formulates DSR instead for the field densities. As a consequence, estimates for predicted effects have to be corrected by many orders of magnitude. Further, we derive that the modified quantum field theory implies a locality bound.Comment: replaced with published versio

    A relativistic acoustic metric for planar black holes

    Full text link
    We demonstrate here that the metric of a planar black hole in asymptotic Anti-de Sitter space can, on a slice of dimension 3+1, be reproduced as a relativistic acoustic metric. This completes an earlier calculation in which the non-relativistic limit was used, and also serves to obtain a concrete form of the Lagrangian.Comment: 11 pages, no figures, replaced with published versio

    A Bi-Metric Theory with Exchange Symmetry

    Get PDF
    We propose an extension of General Relativity with two different metrics. To each metric we define a Levi-Cevita connection and a curvature tensor. We then consider two types of fields, each of which moves according to one of the metrics and its connection. To obtain the field equations for the second metric we impose an exchange symmetry on the action. As a consequence of this ansatz, additional source terms for Einstein's field equations are generated. We discuss the properties of these additional fields, and consider the examples of the Schwarzschild solution, and the Friedmann-Robertson-Walker metric.Comment: 8 pages, no figure
    corecore