5,375 research outputs found
On the Euler angles for SU(N)
In this paper we reconsider the problem of the Euler parametrization for the
unitary groups. After constructing the generic group element in terms of
generalized angles, we compute the invariant measure on SU(N) and then we
determine the full range of the parameters, using both topological and
geometrical methods. In particular, we show that the given parametrization
realizes the group as a fibration of U(N) over the complex projective
space . This justifies the interpretation of the parameters as
generalized Euler angles.Comment: 16 pages, references adde
Non equilibrium current fluctuations in stochastic lattice gases
We study current fluctuations in lattice gases in the macroscopic limit
extending the dynamic approach for density fluctuations developed in previous
articles. More precisely, we establish a large deviation principle for a
space-time fluctuation of the empirical current with a rate functional \mc
I (j). We then estimate the probability of a fluctuation of the average
current over a large time interval; this probability can be obtained by solving
a variational problem for the functional \mc I . We discuss several possible
scenarios, interpreted as dynamical phase transitions, for this variational
problem. They actually occur in specific models. We finally discuss the time
reversal properties of \mc I and derive a fluctuation relationship akin to
the Gallavotti-Cohen theorem for the entropy production.Comment: 36 Pages, No figur
A nonequilibrium extension of the Clausius heat theorem
We generalize the Clausius (in)equality to overdamped mesoscopic and
macroscopic diffusions in the presence of nonconservative forces. In contrast
to previous frameworks, we use a decomposition scheme for heat which is based
on an exact variant of the Minimum Entropy Production Principle as obtained
from dynamical fluctuation theory. This new extended heat theorem holds true
for arbitrary driving and does not require assumptions of local or close to
equilibrium. The argument remains exactly intact for diffusing fields where the
fields correspond to macroscopic profiles of interacting particles under
hydrodynamic fluctuations. We also show that the change of Shannon entropy is
related to the antisymmetric part under a modified time-reversal of the
time-integrated entropy flux.Comment: 23 pages; v2: manuscript significantly extende
Soft and hard wall in a stochastic reaction diffusion equation
We consider a stochastically perturbed reaction diffusion equation in a
bounded interval, with boundary conditions imposing the two stable phases at
the endpoints. We investigate the asymptotic behavior of the front separating
the two stable phases, as the intensity of the noise vanishes and the size of
the interval diverges. In particular, we prove that, in a suitable scaling
limit, the front evolves according to a one-dimensional diffusion process with
a non-linear drift accounting for a "soft" repulsion from the boundary. We
finally show how a "hard" repulsion can be obtained by an extra diffusive
scaling.Comment: 33 page
Crossover to the KPZ equation
We characterize the crossover regime to the KPZ equation for a class of
one-dimensional weakly asymmetric exclusion processes. The crossover depends on
the strength asymmetry () and it occurs at
. We show that the density field is a solution of an
Ornstein-Uhlenbeck equation if , while for it is
an energy solution of the KPZ equation. The corresponding crossover for the
current of particles is readily obtained.Comment: Published by Annales Henri Poincare Volume 13, Number 4 (2012),
813-82
X-linked disorders with cerebellar dysgenesis
X-linked disorders with cerebellar dysgenesis (XLCD) are a genetically heterogeneous and clinically variable group of disorders in which the hallmark is a cerebellar defect (hypoplasia, atrophy or dysplasia) visible on brain imaging, caused by gene mutations or genomic imbalances on the X-chromosome. The neurological features of XLCD include hypotonia, developmental delay, intellectual disability, ataxia and/or other cerebellar signs. Normal cognitive development has also been reported. Cerebellar dysgenesis may be isolated or associated with other brain malformations or multiorgan involvement. There are at least 15 genes on the X-chromosome that have been constantly or occasionally associated with a pathological cerebellar phenotype. 8 XLCD loci have been mapped and several families with X-linked inheritance have been reported. Recently, two recurrent duplication syndromes in Xq28 have been associated with cerebellar hypoplasia. Given the report of several forms of XLCD and the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiological and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance
Perturbative analysis of disordered Ising models close to criticality
We consider a two-dimensional Ising model with random i.i.d. nearest-neighbor
ferromagnetic couplings and no external magnetic field. We show that, if the
probability of supercritical couplings is small enough, the system admits a
convergent cluster expansion with probability one. The associated polymers are
defined on a sequence of increasing scales; in particular the convergence of
the above expansion implies the infinite differentiability of the free energy
but not its analyticity. The basic tools in the proof are a general theory of
graded cluster expansions and a stochastic domination of the disorder
Dynamics and Lax-Phillips scattering for generalized Lamb models
This paper treats the dynamics and scattering of a model of coupled
oscillating systems, a finite dimensional one and a wave field on the half
line. The coupling is realized producing the family of selfadjoint extensions
of the suitably restricted self-adjoint operator describing the uncoupled
dynamics. The spectral theory of the family is studied and the associated
quadratic forms constructed. The dynamics turns out to be Hamiltonian and the
Hamiltonian is described, including the case in which the finite dimensional
systems comprises nonlinear oscillators; in this case the dynamics is shown to
exist as well. In the linear case the system is equivalent, on a dense
subspace, to a wave equation on the half line with higher order boundary
conditions, described by a differential polynomial explicitely
related to the model parameters. In terms of such structure the Lax-Phillips
scattering of the system is studied. In particular we determine the incoming
and outgoing translation representations, the scattering operator, which turns
out to be unitarily equivalent to the multiplication operator given by the
rational function , and the Lax-Phillips semigroup,
which describes the evolution of the states which are neither incoming in the
past nor outgoing in the future
Vortices in the two-dimensional Simple Exclusion Process
We show that the fluctuations of the partial current in two dimensional
diffusive systems are dominated by vortices leading to a different scaling from
the one predicted by the hydrodynamic large deviation theory. This is supported
by exact computations of the variance of partial current fluctuations for the
symmetric simple exclusion process on general graphs. On a two-dimensional
torus, our exact expressions are compared to the results of numerical
simulations. They confirm the logarithmic dependence on the system size of the
fluctuations of the partialflux. The impact of the vortices on the validity of
the fluctuation relation for partial currents is also discussed.Comment: Revised version to appear in Journal of Statistical Physics. Minor
correction
- …