2,054 research outputs found
Spin gap behavior in CuScGeO by Sc nuclear magnetic resonance
We report the results of a Sc nuclear magnetic resonance (NMR) study
on the quasi-one-dimensional compound CuScGeO at
temperatures between 4 and 300 K. This material has been a subject of current
interest due to indications of spin gap behavior. The temperature-dependent NMR
shift exhibits a character of low-dimensional magnetism with a negative broad
maximum at 170 K. Below , the NMR shifts and
spin lattice relaxation rates clearly indicate activated responses, confirming
the existence of a spin gap in CuScGe% O. The experimental
NMR data can be well fitted to the spin dimer model, yielding a spin gap value
of about 275 K which is close to the 25 meV peak found in the inelastic neutron
scattering measurement. A detailed analysis further points out that the nearly
isolated dimer picture is proper for the understanding of spin gap nature in
CuScGeO.Comment: 4 pages, 6 figures, submitted to Phys. Rev.
Comparative study of thermodynamic properties near the structural phase transitions in Sr3 Rh4 Sn13 and Sr3 Ir4 Sn13
[[abstract]]Structural phase transitions in Sr3Rh4Sn13 and Sr3Ir4Sn13 are currently of interest due to the evidence of strong correlation with their superconductivity. To further obtain additional insight into the thermodynamic properties of the phase transitions, we have performed a study of single-crystalline Sr3Rh4Sn13 and Sr3Ir4Sn13 by means of the specific-heat and thermal-expansion measurements, mainly focusing on the features around the phase-transition temperature T∗≃138 and 147 K, respectively. In particular, the specific-heat data have been analyzed in the framework of the critical fluctuation model in addition to a mean-field contribution. Relatively large critical exponents were obtained for Sr3Ir4Sn13, suggesting a shorter coherence length associated with the phase transition. For each compound, an enhancement in the mean-field jump compared to the BCS value has been quantitatively identified, revealing the strong-coupling characteristics for the observed phase transitions. Furthermore, prominent changes in the coefficient of linear thermal expansion and bulk modulus across T∗ have been identified, providing new information about the structural phase transitions in the title compounds.[[notice]]補æ£å®Œ
Chern-Simons Modification of General Relativity
General relativity is extended by promoting the three-dimensional
gravitational Chern-Simons term to four dimensions. This entails choosing an
embedding coordinate v_\mu -- an external quantity, which we fix to be a
non-vanishing constant in its time component. The theory is identical to one in
which the embedding coordinate is itself a dynamical variable, rather than a
fixed, external quantity. Consequently diffeomorphism symmetry breaking is
hidden in the modified theory: the Schwarzschild metric is a solution;
gravitational waves possess two polarizations, each traveling at the velocity
of light; a conserved energy-momentum (pseudo-) tensor can be constructed. The
modification is visible in the intensity of gravitational radiation: the two
polarizations of a gravity wave carry intensities that are suppressed/enchanced
by the extension.Comment: 19 pages, added references, an addition in section
Quasi-Black Holes from Extremal Charged Dust
One can construct families of static solutions that can be viewed as
interpolating between nonsingular spacetimes and those containing black holes.
Although everywhere nonsingular, these solutions come arbitrarily close to
having a horizon. To an observer in the exterior region, it becomes
increasingly difficulty to distinguish these from a true black hole as the
critical limiting solution is approached. In this paper we use the
Majumdar-Papapetrou formalism to construct such quasi-black hole solutions from
extremal charged dust. We study the gravitational properties of these
solutions, comparing them with the the quasi-black hole solutions based on
magnetic monopoles. As in the latter case, we find that solutions can be
constructed with or without hair.Comment: 18 page
Tracking intracavernously injected adipose-derived stem cells to bone marrow.
The intracavernous (i.c.) injection of stem cells (SCs) has been shown to improve erectile function in various erectile dysfunction (ED) animal models. However, the tissue distribution of the injected cells remains unknown. In this study we tracked i.c.-injected adipose-derived stem cells (ADSCs) in various tissues. Rat paratesticular fat was processed for ADSC isolation and culture. The animals were then subject to cavernous nerve (CN) crush injury or sham operation, followed by i.c. injection of 1 million autologous or allogeneic ADSCs that were labeled with 5-ethynyl-2-deoxyuridine (EdU). Another group of rats received i.c. injection of EdU-labeled allogeneic penile smooth muscle cells (PSMCs). At 2 and 7 days post injection, penises and femoral bone marrow were processed for histological analyses. Whole femoral bone marrows were also analyzed for EdU-positive cells by flow cytometry. The results show that ADSCs exited the penis within days of i.c. injection and migrated preferentially to bone marrow. Allogenicity did not affect the bone marrow appearance of ADSCs at either 2 or 7 days, whereas CN injury reduced the number of ADSCs in bone marrow significantly at 7 but not 2 days. The significance of these results in relation to SC therapy for ED is discussed
Quantum Melting of the Charge Density Wave State in 1T-TiSe2
We report a Raman scattering study of low-temperature, pressure-induced
melting of the CDW phase of 1T-TiSe2. Our Raman scattering measurements reveal
that the collapse of the CDW state occurs in three stages: (i) For P<5 kbar,
the pressure dependence of the CDW amplitude mode energies and intensities are
indicative of a ``crystalline'' CDW regime; (ii) for 5 < P < 25 kbar, there is
a decrease in the CDW amplitude mode energies and intensities with increasing
pressure that suggests a regime in which the CDW softens, and may decouple from
the lattice; and (iii) for P>25 kbar, the absence of amplitude modes reveals a
melted CDW regime.Comment: 5 pages, 4 figure
Helical structures from an isotropic homopolymer model
We present Monte Carlo simulation results for square-well homopolymers at a
series of bond lengths. Although the model contains only isotropic pairwise
interactions, under appropriate conditions this system shows spontaneous chiral
symmetry breaking, where the chain exists in either a left- or a right-handed
helical structure. We investigate how this behavior depends upon the ratio
between bond length and monomer radius.Comment: 10 pages, 3 figures, accepted for publication by Physical Review
Letter
Phase and group velocity tracing analysis of projected wave packet motion along oblique radar beams ? qualitative analysis of QP echoes
International audienceThe wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr), with different zenith angle ? and azimuth angle ?, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period ?. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out
Gravitational Leakage into Extra Dimensions: Probing Dark Energy Using Local Gravity
The braneworld model of Dvali-Gabadadze-Porrati (DGP) is a theory where
gravity is modified at large distances by the arrested leakage of gravitons off
our four-dimensional universe. Cosmology in this model has been shown to
support both "conventional" and exotic explanations of the dark energy
responsible for today's cosmic acceleration. We present new results for the
gravitational field of a clustered matter source on the background of an
accelerating universe in DGP braneworld gravity, and articulate how these
results differ from those of general relativity. In particular, we show that
orbits nearby a mass source suffer a universal anomalous precession as large as
5 microarcseconds/year, dependent only on the graviton's effective linewidth
and the global geometry of the full, five-dimensional universe. Thus, this
theory offers a local gravity correction sensitive to factors that dictate
cosmological history.Comment: 18 pages, 1 figure, revtex. Reference updated. Footnote change
Transport properties of highly asymmetric hard-sphere mixtures
The static and dynamic properties of binary mixtures of hard spheres with a diameter ratio of sigma(B)/sigma(A)= 0.1 and a mass ratio of m(B)/m(A)= 0.001 are investigated using event driven molecular dynamics. The contact values of the pair correlation functions are found to compare favorably with recently proposed theoretical expressions. The transport coefficients of the mixture, determined from simulation, are compared to the predictions of the revised Enskog theory using both a third-order Sonine expansion and direct simulation Monte Carlo. Overall, the Enskog theory provides a fairly good description of the simulation data, with the exception of systems at the smallest mole fraction of larger spheres (x(A)=0.01) examined. A "fines effect" was observed at higher packing fractions, where adding smaller spheres to a system of large spheres decreases the viscosity of the mixture; this effect is not captured by the Enskog theory
- …