55,411 research outputs found
Ramadan school holidays as a natural experiment : impacts of seasonality on school dropout in Bangladesh
In 2000, Ramadan school vacation coincided with the original annual exam period of December in Bangladesh. This forced schools to pre-pone their final exam schedules in November, which was the month before the harvest begins. 'Ramadan 2000' is a natural experiment that reduced the labor demand for children during the exam period. Using household level panel data of 2000 and 2003, and after controlling for various unobservable variations including individual fixed effects, aggregate year effects, and subdistrict-level year effects, this paper finds evidence of statistically significant impact of seasonal labor demand on school dropout in Bangladesh among the children from agricultural households.Bangladesh, Child labor, Schools, Labor market, Drop out, Seasonal labor demand, School calendar
Spin-Polarization Response Functions in High-Energy (e,e'p) Reactions
Spin-polarization response functions are examined for high-energy
reaction by computing the full 18 response functions for
the proton kinetic energy 0.515 GeV and 3.179 GeV with an 16O target.
The Dirac eikonal formalism is applied to account for the final-state
interactions. The formalism is found to yield the response functions in good
agreement with those calculated by the partial-wave expansion method at 0.515
GeV. We identify the response functions that depend on the spin-orbital
potential in the final-state interactions, but not on the central potential.
Dependence on the Dirac- or Pauli-type current of the nucleon is investigated
in the helicity-dependent response functions, and the normal-component
polarization of the knocked-out proton, , is computed.Comment: 22 pages, Latex, figures available at
ftp://ftp.krl.caltech.edu/pub/users/rseki/it
Evolution of non-thermal emission from shell associated with AGN jets
We explore the evolution of the emissions by accelerated electrons in shocked
shells driven by jets in active galactic nuclei (AGNs). Focusing on powerful
sources which host luminous quasars, we evaluated the broadband emission
spectra by properly taking into account adiabatic and radiative cooling effects
on the electron distribution. The synchrotron radiation and inverse Compton
(IC) scattering of various photons that are mainly produced in the accretion
disc and dusty torus are considered as radiation processes. We show that the
resultant radiation is dominated by the IC emission for compact sources (<
10kpc), whereas the synchrotron radiation is more important for larger sources.
We also compare the shell emissions with those expected from the lobe under the
assumption that a fractions of the energy deposited in the shell and lobe
carried by the non-thermal electrons are and
, respectively. Then, we find that the shell
emissions are brighter than the lobe ones at infra-red and optical bands when
the source size is > 10kpc, and the IC emissions from the shell at > 10 GeV can
be observed with the absence of contamination from the lobe irrespective of the
source size. In particular, it is predicted that, for most powerful nearby
sources (), TeV gamma-rays produced via the IC
emissions can be detected by the modern Cherenkov telescopes such as MAGIC,
HESS and VERITAS.Comment: 13 pages, 5 figures, accepted for publication in Ap
Analysis of 2D THz-Raman spectroscopy using a non-Markovian Brownian oscillator model with nonlinear system-bath interactions
We explore and describe the roles of inter-molecular vibrations employing a
Brownian oscillator (BO) model with linear-linear (LL) and square-linear (SL)
system-bath interactions, which we use to analyze two-dimensional (2D)
THz-Raman spectra obtained by means of molecular dynamics (MD) simulations. In
addition to linear absorption (1D IR), we calculated 2D Raman-THz-THz,
THz-Raman-THz, and THz-THz-Raman signals for liquid formamide, water, and
methanol using an equilibrium non-equilibrium hybrid MD simulation. The
calculated 1D IR and 2D THz-Raman signals are compared with results obtained
from the LL+SL BO model applied through use of hierarchal Fokker-Planck
equations with non-perturbative and non-Markovian noise. We find that all of
the qualitative features of the 2D profiles of the signals obtained from the MD
simulations are reproduced with the LL+SL BO model, indicating that this model
captures the essential features of the inter-molecular motion. We analyze the
fitted 2D profiles in terms of anharmonicity, nonlinear polarizability, and
dephasing time. The origins of the echo peaks of the librational motion and the
elongated peaks parallel to the probe direction are elucidated using optical
Liouville paths.Comment: 37 pages with 14 figures and 3 table
Determination of Trace Levels of Uranium and Thorium in High Purity Gadolinium Sulfate Using ICP-MS with Solid-Phase Chromatographic Extraction Resin
The new Super-Kamiokande-Gadolinium (SK-Gd) project is an upgrade of the
Super-Kamiokande (SK) detector. In the SK-Gd project, 0.2\% Gd(SO)
is loaded into the 50 kton water tank of the SK. One of the main purposes of
the project is to discover Supernova Relic Neutrinos. Neutrino measurements and
proton decay searches will also be performed in the SK-Gd. In order to measure
solar neutrinos with a low energy threshold of 3.5 MeV in the SK-Gd, the
main radioactive contaminations, U and Th, in
Gd(SO)8HO, should be minimized before loading. Our
maximum levels for U and Th are 5 mBq (U)/kg (Gd(SO)8HO)
and 0.05 mBq (Th)/kg (Gd(SO)8HO).
In order to measure such low concentrations of U and Th in
Gd(SO)8HO, we developed the solid-phase extraction
technique. Using this method, about 90\% or more U and Th could be efficiently
extracted while Gd was reduced by a factor of about . This allowed
these radioactivity contaminations to be measured precisely as 0.04 mBq/kg
(Gd(SO)8HO) for U and 0.01 mBq/kg
(Gd(SO)8HO) for Th. We measured three pure
Gd(SO)8HO samples using this method and estimated that
the purest one contained mBq (U)/kg (Gd(SO)8HO)
and 0.06 0.01 mBq (Th)/kg (Gd(SO)8HO) by ICP-MS.Comment: 13 pages, 11 figure
Time dependent spin-dressing using a He atomic beam
We have performed high precision experimental measurements of spin precession
using a dressed He atomic beam. Spin-dressing uses an oscillating magnetic
field detuned to high frequency which is orthogonal to a static magnetic field
to effectively change the gyromagnetic ratio of a spin. We verify the validity
of the spin-dressing Hamiltonian in regions beyond the limiting solution in
which the Larmor frequency is much smaller than the frequency of the dressing
field. We also evaluate the effect of magnetic field misalignment, e.g. if the
oscillating magnetic field is not orthogonal to the static magnetic field.
Modulation of the dressing field parameters is also discussed, with a focus on
whether such a modulation can be approximated merely as a time dependent,
dressed gyromagnetic ratio. Furthermore, we discuss implications for a proposed
search for the neutron electric dipole moment, which would employ spin-dressing
to make the effective He and neutron magnetic moments equal.Comment: 10 pages, 7 figure
- …
