93 research outputs found

    Very High Energy Gamma-ray spectral properties of Mrk 501 from CAT Cerenkov telescope observations in 1997

    Full text link
    The BL Lac object Mrk 501 went into a very high state of activity during 1997, both in VHE gamma-rays and X-rays. We present here results from observations at energies above 250 GeV carried out between March and October 1997 with the CAT Cerenkov imaging Telescope. The average differential spectrum between 30 GeV and 13 TeV shows significant curvature and is well represented by phi_0 * E_TeV^{-(alpha + beta*log10(E_TeV))}, with: phi_0 = 5.19 +/- 0.13 {stat} +/- 0.12 {sys-MC} +1.66/-1.04 {sys-atm} * 10^-11 /cm^2/s/TeV alpha = 2.24 +/- 0.04 {stat} +/- 0.05 {sys} beta = 0.50 +/- 0.07 {stat} (negligible systematics). The TeV spectral energy distribution of Mrk 501 clearly peaks in the range 500 GeV-1 TeV. Investigation of spectral variations shows a significant hardness-intensity correlation with no measurable effect on the curvature. This can be described as an increase of the peak TeV emission energy with intensity. Simultaneous and quasi-simultaneous CAT VHE gamma-ray and BeppoSAX hard X-ray detections for the highest recorded flare on 16th April and for lower-activity states of the same period show correlated variability with a higher luminosity in X-rays than in gamma-rays. The observed spectral energy distribution and the correlated variability between X-rays and gamma-rays, both in amplitude and in hardening of spectra, favour a two-component emission scheme where the low and high energy components are attributed to synchrotron and inverse Compton (IC) radiation, respectively.Comment: Submitted to Astronomy and Astrophysics, 8 pages including 6 figures. Published with minor change

    Spectrum and Variability of Mrk501 as observed by the CAT Imaging Telescope

    Get PDF
    The CAT Imaging Telescope has observed the BL Lac object Markarian 501 between March and August 1997. We report here on the variability over this time including several large flares. We present also preliminary spectra for all these data, for the low emission state, and for the largest flare.Comment: 4 pages, 4 figures, Late

    Observation of the Crab Nebula Gamma-Ray Emission Above 220 Gev by the Cat Cherenkov Imaging Telescope

    Get PDF
    The CAT imaging telescope, recently built on the site of the former solar plant Themis (French Pyrenees), observed gamma-rays from the Crab nebula from October 1996 to March 1997. This steady source, often considered as the standard candle of very-high-energy gamma-ray astronomy, is used as a test-beam to probe the performances of the new telescope, particularly its energy threshold (220 GeV at 20 degrees zenith angle) and the stability of its response. Due to the fine-grain camera, an accurate analysis of the longitudinal profiles of shower images is performed, yielding the source position in two dimensions for each individual shower.Comment: 5 pages, 3 figures, Tex, contribution to 25th ICRC Durba

    Detection of Vhe Gamma-Rays from MRK 501 with the Cat Imaging Telescope

    Get PDF
    The CAT imaging telescope on the site on the former solar plant Themis has been observing gamma-rays from Mrk501 above 220 GeV in March and April 1997. This source is shown to be highly variable and the light curve is presented. The detected gamma-ray rate for the most intense flare is in excess of 10 per minute.Comment: 5 pages, 4 figures, Tex, contribution to 25th ICRC Durba

    The CAT Imaging Telescope for Very-High-Energy Gamma-Ray Astronomy

    Get PDF
    The CAT (Cherenkov Array at Themis) imaging telescope, equipped with a very-high-definition camera (546 fast phototubes with 0.12 degrees spacing surrounded by 54 larger tubes in two guard rings) started operation in Autumn 1996 on the site of the former solar plant Themis (France). Using the atmospheric Cherenkov technique, it detects and identifies very high energy gamma-rays in the range 250 GeV to a few tens of TeV. The instrument, which has detected three sources (Crab nebula, Mrk 421 and Mrk 501), is described in detail.Comment: 24 pages, 15 figures. submitted to Elsevier Preprin

    Detection of the BL Lac object 1ES1426+428 in the Very High Energy gamma-ray band by the CAT Telescope from 1998-2000

    Get PDF
    The BL Lac Object 1ES 1426+428, at a red-shift of z=0.129, has been monitored by the CAT telescope from February 1998 to June 2000. The accumulation of 26 hours of observations shows a gamma-ray signal of 321 events above 250 GeV at 5.2 standard deviations, determined using data analysis cuts adapted to a weak, steep-spectrum source. The source emission has an average flux of Phi_diff(400 GeV) = 6.73 +/- 1.27stat +/- 1.45syst x 10^-11 /cm^-2/s/TeV, and a very steep spectrum, with a differential spectral index of gamma = -3.60 +/- 0.57 which can be refined to gamma = -3.66 +/- 0.41 using a higher flux data subset. If, as expected from its broad-band properties, the Very High Energy emission is hard at the source, these observations support a strong absorption effect of gamma-rays by the Intergalactic Infrared field.Comment: 4 pages, 3 figures, accepted for publication in A&A Letter

    Evolutionary Trends of the Pharyngeal Dentition in Cypriniformes (Actinopterygii: Ostariophysi)

    Get PDF
    International audienceBACKGROUND: The fish order Cypriniformes is one of the most diverse ray-finned fish groups in the world with more than 3000 recognized species. Cypriniformes are characterized by a striking distribution of their dentition: namely the absence of oral teeth and presence of pharyngeal teeth on the last gill arch (fifth ceratobranchial). Despite this limited localisation, the diversity of tooth patterns in Cypriniformes is astonishing. Here we provide a further description of this diversity using X-ray microtomography and we map the resulting dental characters on a phylogenetic tree to explore evolutionary trends. RESULTS: We performed a pilot survey of dental formulae and individual tooth shapes in 34 adult species of Cypriniformes by X-ray microtomography (using either conventional X-ray machine, or synchrotron microtomography when necessary) or by dissecting. By mapping morphological results in a phylogenetic tree, it emerges that the two super-families Cobitoidea and Cyprinoidea have followed two distinct evolutionary pathways. Furthermore, our analysis supports the hypothesis of a three-row dentition as ancestral for Cyprinoidea and a general trend in tooth row reduction in most derived lineages. Yet, this general scheme must be considered with caution as several events of tooth row gain and loss have occurred during evolutionary history of Cyprinoidea. SIGNIFICANCE: Dentition diversity in Cypriniformes constitutes an excellent model to study the evolution of complex morphological structures. This morphological survey clearly advocates for extending the use of X-ray microtomography to study tooth morphology in Cypriniformes. Yet, our survey also underlines that improved knowledge of Cypriniformes life traits, such as feeding habits, is required as current knowledge is not sufficient to conclude on the link between diet and dental morphology

    The CAT Imaging Telescope

    Get PDF
    The VHE gamma-ray imaging telescope CAT started taking data in October 1996. Located at the Themis solar site in southern France, it features a 17.7 m^2 Davies-Cotton mirror equipped with 600 PMT camera at the focal plane. The mechanics and optics, the PMTs and the electronics are presented. The performance, based on the first 7 months of operation, is described

    Measurement of the Crab Flux Above 60 GeV with the CELESTE Cherenkov Telescope

    Full text link
    We have converted the former solar electrical plant THEMIS (French Pyrenees) into an atmospheric Cherenkov detector called CELESTE, which records gamma rays above 30 GeV (7E24 Hz). Here we present the first sub-100 GeV detection by a ground based telescope of a gamma ray source, the Crab nebula, in the energy region between satellite measurements and imaging atmospheric Cherenkov telescopes. At our analysis threshold energy of 60 +/- 20 GeV we measure a gamma ray rate of 6.1 +/- 0.8 per minute. Allowing for 30% systematic uncertainties and a 30% error on the energy scale yields an integral gamma ray flux of I(E>60 GeV) = 6.2^{+5.3}_{-2.3} E-6 photons m^-2 s^-1. The analysis methods used to obtain the gamma ray signal from the raw data are detailed. In addition, we determine the upper limit for pulsed emission to be <12% of the Crab flux at the 99% confidence level, in the same energy range. Our result indicates that if the power law observed by EGRET is attenuated by a cutoff of form e^{-E/E_0} then E_0 < 26 GeV. This is the lowest energy probed by a Cherenkov detector and leaves only a narrow range unexplored beyond the energy range studied by EGRET.Comment: 34 pages, accepted by the Astrophysical Journa

    Activation of FGF Signaling Mediates Proliferative and Osteogenic Differences between Neural Crest Derived Frontal and Mesoderm Parietal Derived Bone

    Get PDF
    BACKGROUND: As a culmination of efforts over the last years, our knowledge of the embryonic origins of the mammalian frontal and parietal cranial bones is unambiguous. Progenitor cells that subsequently give rise to frontal bone are of neural crest origin, while parietal bone progenitors arise from paraxial mesoderm. Given the unique qualities of neural crest cells and the clear delineation of the embryonic origins of the calvarial bones, we sought to determine whether mouse neural crest derived frontal bone differs in biology from mesoderm derived parietal bone. METHODS: BrdU incorporation, immunoblotting and osteogenic differentiation assays were performed to investigate the proliferative rate and osteogenic potential of embryonic and postnatal osteoblasts derived from mouse frontal and parietal bones. Co-culture experiments and treatment with conditioned medium harvested from both types of osteoblasts were performed to investigate potential interactions between the two different tissue origin osteoblasts. Immunoblotting techniques were used to investigate the endogenous level of FGF-2 and the activation of three major FGF signaling pathways. Knockdown of FGF Receptor 1 (FgfR1) was employed to inactivate the FGF signaling. RESULTS: Our results demonstrated that striking differences in cell proliferation and osteogenic differentiation between the frontal and parietal bone can be detected already at embryonic stages. The greater proliferation rate, as well as osteogenic capacity of frontal bone derived osteoblasts, were paralleled by an elevated level of FGF-2 protein synthesis. Moreover, an enhanced activation of FGF-signaling pathways was observed in frontal bone derived osteoblasts. Finally, the greater osteogenic potential of frontal derived osteoblasts was dramatically impaired by knocking down FgfR1. CONCLUSIONS: Osteoblasts from mouse neural crest derived frontal bone displayed a greater proliferative and osteogenic potential and endogenous enhanced activation of FGF signaling compared to osteoblasts from mesoderm derived parietal bone. FGF signaling plays a key role in determining biological differences between the two types of osteoblasts
    corecore