3,311,401 research outputs found

    Quantum Computing in Arrays Coupled by 'Always On' Interactions

    Full text link
    It has recently been shown that one can perform quantum computation in a Heisenberg chain in which the interactions are 'always on', provided that one can abruptly tune the Zeeman energies of the individual (pseudo-)spins. Here we provide a more complete analysis of this scheme, including several generalizations. We generalize the interaction to an anisotropic form (incorporating the XY, or Forster, interaction as a limit), providing a proof that a chain coupled in this fashion tends to an effective Ising chain in the limit of far off-resonant spins. We derive the primitive two-qubit gate that results from exploiting abrupt Zeeman tuning with such an interaction. We also demonstrate, via numerical simulation, that the same basic scheme functions in the case of smoothly shifted Zeeman energies. We conclude with some remarks regarding generalisations to two- and three-dimensional arrays.Comment: 16 pages (preprint format) inc. 3 figure

    Quantum Computing with Globally Controlled Exchange-type Interactions

    Full text link
    If the interaction between qubits in a quantum computer has a non-diagonal form (e.g. the Heisenberg interaction), then one must be able to "switch it off" in order to prevent uncontrolled propagation of states. Therefore, such QC schemes typically demand local control of the interaction strength between each pair of neighboring qubits. Here we demonstrate that this degree of control is not necessary: it suffices to switch the interaction collectively - something that can in principle be achieved by global fields rather than with local manipulations. This observation may offer a significant simplification for various solid state, optical lattice and NMR implementations.Comment: 3 pages inc. 3 figure

    Representations and classification of traveling wave solutions to Sinh-G{\"o}rdon equation

    Full text link
    Two concepts named atom solution and combinatory solution are defined. The classification of all single traveling wave atom solutions to Sinh-G{\"o}rdon equation is obtained, and qualitative properties of solutions are discussed. In particular, we point out that some qualitative properties derived intuitively from dynamic system method aren't true. In final, we prove that our solutions to Sinh-G{\"o}rdon equation include all solutions obtained in the paper[Fu Z T et al, Commu. in Theor. Phys.(Beijing) 2006 45 55]. Through an example, we show how to give some new identities on Jacobian elliptic functions.Comment: 12 pages. accepted by Communications in theoretical physics (Beijing
    corecore