43 research outputs found

    Environmental Levels of the Antiviral Oseltamivir Induce Development of Resistance Mutation H274Y in Influenza A/H1N1 Virus in Mallards

    Get PDF
    Oseltamivir (Tamiflu®) is the most widely used drug against influenza infections and is extensively stockpiled worldwide as part of pandemic preparedness plans. However, resistance is a growing problem and in 2008–2009, seasonal human influenza A/H1N1 virus strains in most parts of the world carried the mutation H274Y in the neuraminidase gene which causes resistance to the drug. The active metabolite of oseltamivir, oseltamivir carboxylate (OC), is poorly degraded in sewage treatment plants and surface water and has been detected in aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance. To assess if resistance can develop under these circumstances, we infected mallards with influenza A/H1N1 virus and exposed the birds to 80 ng/L, 1 µg/L and 80 µg/L of OC through their sole water source. By sequencing the neuraminidase gene from fecal samples, we found that H274Y occurred at 1 µg/L of OC and rapidly dominated the viral population at 80 µg/L. IC50 for OC was increased from 2–4 nM in wild-type viruses to 400–700 nM in H274Y mutants as measured by a neuraminidase inhibition assay. This is consistent with the decrease in sensitivity to OC that has been noted among human clinical isolates carrying H274Y. Environmental OC levels have been measured to 58–293 ng/L during seasonal outbreaks and are expected to reach µg/L-levels during pandemics. Thus, resistance could be induced in influenza viruses circulating among wild ducks. As influenza viruses can cross species barriers, oseltamivir resistance could spread to human-adapted strains with pandemic potential disabling oseltamivir, a cornerstone in pandemic preparedness planning. We propose surveillance in wild birds as a measure to understand the resistance situation in nature and to monitor it over time. Strategies to lower environmental levels of OC include improved sewage treatment and, more importantly, a prudent use of antivirals

    Risk factors for recurrent wheezing in infants: a case-control study

    Get PDF
    ABSTRACT OBJECTIVE To evaluate the association between recurrent wheezing and atopy, the Asthma Predictive Index, exposure to risk factors, and total serum IgE levels as potential factors to predict recurrent wheezing. METHODS A case-control study with infants aged 6-24 months treated at a specialized outpatient clinic from November 2011 to March 2013. Evaluations included sensitivity to inhalant and food antigens, positive Asthma Predictive Index, and other risk factors for recurrent wheezing (smoking during pregnancy, presence of indoor smoke, viral infections, and total serum IgE levels). RESULTS We evaluated 113 children: 65 infants with recurrent wheezing (63.0% male) with a mean age of 14.8 (SD = 5.2) months and 48 healthy infants (44.0% male) with a mean age of 15.2 (SD = 5.1) months. In the multiple analysis model, antigen sensitivity (OR = 12.45; 95%CI 1.28–19.11), positive Asthma Predictive Index (OR = 5.57; 95%CI 2.23–7.96), and exposure to environmental smoke (OR = 2.63; 95%CI 1.09–6.30) remained as risk factors for wheezing. Eosinophilia ≥ 4.0% e total IgE ≥ 100 UI/mL were more prevalent in the wheezing group, but failed to remain in the model. Smoking during pregnancy was identified in a small number of mothers, and secondhand smoke at home was higher in the control group. CONCLUSIONS Presence of atopy, positive Asthma Predictive Index and exposure to environmental smoke are associated to recurrent wheezing. Identifying these factors enables the adoption of preventive measures, especially for children susceptible to persistent wheezing and future asthma onset

    High density lipoprotein concentrations after cessation of smoking: the importance of alterations in diet

    No full text
    Cessation of smoking is followed by a rapid rise in plasma HDL concentrations. An earlier study has demonstrated a significant relationship between the increase in HDL concentrations and spontaneous changes in food intake, specifically an increased fat intake. In this investigation we have dissociated the effects of cessation of smoking as such from those of dietary alterations by monitoring plasma lipid and lipoprotein concentrations after cessation of smoking in 12 subjects whose diet was kept constant during an initial 2-week control period and during 2 weeks following cessation of smoking. Under these conditions plasma HDL-cholesterol levels did not increase significantly (1.01 +/- 0.26 mmol/l (mean +/- SD) before and 1.04 +/- 0.27 mmol/l after cessation of smoking). Similarly, no significant alterations were recorded for other plasma lipid or lipoprotein concentrations. Activities of lipoprotein lipase and hepatic lipase were unchanged throughout the study. These results suggest that the marked rise in HDL concentrations after stopping smoking is largely related to spontaneous changes in dietary habits which occur upon cessation of smoking

    Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors.

    No full text
    As the obligate member of most nuclear receptor heterodimers, retinoid X receptors (RXRs) can potentially perform two functions: cooperative binding to hormone response elements and coordinate regulation of target genes by RXR ligands. In this paper we describe allosteric interactions between RXR and two heterodimeric partners, retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs); RARs and PPARs prevent and permit activation by RXR-specific ligands, respectively. By competing for dimerization with RXR on response elements consisting of direct-repeat half-sites spaced by 1 bp (DR1 elements), the relative abundance of RAR and PPAR determines whether the RXR signaling pathway will be functional. In contrast to RAR, which prevents the binding of RXR ligands and recruits the nuclear receptor corepressor N-CoR, PPAR permits the binding of SRC-1 in response to both RXR and PPAR ligands. Overexpression of SRC-1 markedly potentiates ligand-dependent transcription by PPARgamma, suggesting that SRC-1 serves as a coactivator in vivo. Remarkably, the ability of RAR to both block the binding of ligands to RXR and interact with corepressors requires the CoR box, a structural motif residing in the N-terminal region of the RAR ligand binding domain. Mutations in the CoR box convert RAR from a nonpermissive to a permissive partner of RXR signaling on DR1 elements. We suggest that the differential recruitment of coactivators and corepressors by RAR-RXR and PPAR-RXR heterodimers provides the basis for a transcriptional switch that may be important in controlling complex programs of gene expression, such as adipocyte differentiation
    corecore