2,252 research outputs found

    Vortex-Antivortex Lattice in Ultra-Cold Fermi Gases

    Full text link
    We discuss ultra-cold Fermi gases in two dimensions, which could be realized in a strongly confining one-dimensional optical lattice. We obtain the temperature versus effective interaction phase diagram for an s-wave superfluid and show that, below a certain critical temperature T_c, spontaneous vortex-antivortex pairs appear for all coupling strengths. In addition, we show that the evolution from weak to strong coupling is smooth, and that the system forms a square vortex-antivortex lattice at a lower critical temperature T_M.Comment: Submitted to Physical Review Letter

    F-wave versus P-wave Superconductivity in Organic Conductors

    Full text link
    Current experimental results suggest that some organic quasi-one-dimensional superconductors exhibit triplet pairing symmetry. Thus, we discuss several potential triplet order parameters for the superconducting state of these systems within the functional integral formulation. We compare weak spin-orbit coupling fxyzf_{xyz}, pxp_x, pyp_y and pzp_z symmetries via several thermodynamic quantities. For each symmetry, we analyse the temperature dependences of the order parameter, condensation energy, specific heat, and superfluid density tensor.Comment: 5 pages, 4 figure

    Phase Fluctuations and Vortex Lattice Melting in Triplet Quasi-One-Dimensional Superconductors at High Magnetic Fields

    Full text link
    Assuming that the order parameter corresponds to an equal spin triplet pairing symmetry state, we calculate the effect of phase fluctuations in quasi-one-dimensional superconductors at high magnetic fields applied along the y (b') axis. We show that phase fluctuations can destroy the theoretically predicted triplet reentrant superconducting state, and that they are responsible for melting the magnetic field induced Josephson vortex lattice above a magnetic field dependent melting temperature Tm.Comment: 4 pages (double column), 1 eps figur

    Simulated ecology-driven sympatric speciation

    Full text link
    We introduce a multi-locus genetically acquired phenotype, submitted to mutations and with selective value, in an age-structured model for biological aging. This phenotype describes a single-trait effect of the environment on an individual, and we study the resulting distribution of this trait among the population. In particular, our simulations show that the appearance of a double phenotypic attractor in the ecology induces the emergence of a stable polymorphism, as observed in the Galapagos finches. In the presence of this polymorphism, the simulations generate short-term speciation, when mating preferences are also allowed to suffer mutations and acquire selective value.Comment: 11 pages, 5 figures, 1 table, uses package RevTe

    The evolution from BCS to BEC superfluidity in the presence of disorder

    Full text link
    We describe the effects of disorder on the critical temperature of ss-wave superfluids from the BCS to the BEC regime, with direct application to ultracold fermions. We use the functional integral method and the replica technique to study Gaussian correlated disorder due to impurities, and we discuss how this system can be generated experimentally. In the absence of disorder, the BCS regime is characterized by pair breaking and phase coherence temperature scales which are essentially the same allowing strong correlations between the amplitude and phase of the order parameter for superfluidity. As non-pair breaking disorder is introduced the largely overlapping Cooper pairs conspire to maintain phase coherence such that the critical temperature remains essentially unchanged, and Anderson's theorem is satisfied. However in the BEC regime the pair breaking and phase coherence temperature scales are very different such that non-pair breaking disorder can affect dramatically phase coherence, and thus the critical temperature, without the requirement of breaking tightly-bound fermion pairs simultaneously. In this case, Anderson's theorem does not apply, and the critical temperature can be more easily reduced in comparison to the BCS limit. Lastly, we find that the superfluid is more robust against disorder in the intermediate region near unitarity between the two regimes
    corecore