6,370 research outputs found

    Experience with Commissioning the CMS Pixel Detector

    Get PDF
    The CMS pixel detector consists of three barrel layers and two forward disks on each side of the interaction region. The pixel detector has a total of almost 66 million channels. In this presentation an overview to the pixel DAQ system and the commissioning of the detector prior to installation is given. Some issues experienced with the operation of the detector are discussed

    Measurement of branching fractions and CP-violating charge asymmetries for B-meson decays to D^(*)D^(*), and implications for the Cabibbo-Kobayashi-Maskawa angle γ

    Get PDF
    We present measurements of the branching fractions and charge asymmetries of B decays to all D^(*)D^(*) modes. Using 232×10^6 BB pairs recorded on the Υ(4S) resonance by the BABAR detector at the e^+e^- asymmetric B factory PEP-II at the Stanford Linear Accelerator Center, we measure the branching fractions B(B^0→D^(*+)D^(*-))=(8.1±0.6±1.0)×10^(-4), B(B^0→D^(*±)D^∓)=(5.7±0.7±0.7)×10^(-4), B(B^0→D^+D^-)=(2.8±0.4±0.5)×10^(-4), B(B^+→D^(*+)D^(*0))=(8.1±1.2±1.2)×10^(-4), B(B^+→D^*+D^0)=(3.6±0.5±0.4)×10^(-4), B(B^+→D^+D^(*0))=(6.3±1.4±1.0)×10^(-4), and B(B^+→D^+D^(0))=(3.8±0.6±0.5)×10^(-4), where in each case the first uncertainty is statistical and the second systematic. We also determine the limits B(B^0→D^(*0)D^(*0))<0.9×10^(-4), B(B^0→D^(*0)D^0)<2.9×10^(-4), and B(B^0→D^0D^0)<0.6×10^(-4), each at 90% confidence level. All decays above denote either member of a charge-conjugate pair. We also determine the CP-violating charge asymmetries A(B^0→D^(*±)D^∓)=0.03±0.10±0.02, A(B^+→D^(*+)D^(*0))=-0.15±0.11±0.02, A(B^+→D^(*+)D^0)=-0.06±0.13±0.02, A(B^+→D^+D^(*0))=0.13±0.18±0.04, and A(B^+→D^+D^0)=-0.13±0.14±0.02. Additionally, when we combine these results with information from time-dependent CP asymmetries in B^0→D^((*)+)D^((*)-) decays and world-averaged branching fractions of B decays to D_s^(*)D^(*) modes, we find the Cabibbo-Kobayashi-Maskawa phase γ is favored to lie in the range (0.07–2.77) radians (with a +0 or +π radians ambiguity) at 68% confidence level

    Search for the decay τ-→3π^-2π^+2π^0ν_τ

    Get PDF
    A search for the decay of the τ lepton to five charged and two neutral pions is performed using data collected by the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider. The analysis uses 232  fb^(-1) of data at center-of-mass energies on or near the Υ(4S) resonance. We observe 10 events with an expected background of 6.5_(-1.4)^(+2.0) events. In the absence of a signal, we set the limit on the branching ratio B(τ-→3π^-2π^+2π^0ν_τ)<3.4×10^(-6) at the 90% confidence level. This is a significant improvement over the previously established limit. In addition, we search for the decay mode τ-→2ωπ-ν_τ. We observe 1 event with an expected background of 0.4+1.0/-0.4 events and calculate the upper limit B(τ-→2ωπ-ν_τ)<5.4×10^(-7) at the 90% confidence level. This is the first upper limit for this mode

    Search for the charmed pentaquark candidate Θ_c(3100)^0 in e^+e^- annihilations at √s=10.58  GeV

    Get PDF
    We search for the charmed pentaquark candidate reported by the H1 collaboration, the Θ_c(3100)^0, in e^+e^- interactions at a center-of-mass (c.m.) energy of 10.58 GeV, using 124  fb^(-1) of data recorded with the BABAR detector at the PEP-II e^+e^- facility at SLAC. We find no evidence for such a state in the same pD^(*-) decay mode reported by H1, and we set limits on its production cross section times branching fraction into pD^(*-) as a function of c.m. momentum. The corresponding limit on its total rate per e^+e^-→qq event, times branching fraction, is about 3 orders of magnitude lower than rates measured for the charmed Λ_c and Σ_c baryons in such events

    Observation of B^0 Meson Decay to a_1^±(1260)π^∓

    Get PDF
    We present a measurement of the branching fraction of the decay B^0→a_1^±(1260)π^∓ with a_1^±(1260)→π^∓π^±π^±. The data sample corresponds to 218×10^6 BB pairs produced in e^+e^- annihilation through the Υ(4S) resonance. We measure the branching fraction B(B^0→a_1^±(1260)π^∓)B(a_1^±(1260)→π^∓π^±π^±)=(16.6±1.9±1.5)×10^(-6), where the first error quoted is statistical and the second is systematic
    • …
    corecore