2,173 research outputs found

    SLIDES: What We Know (and Don’t Know) about the Effects of Oil and Gas Development on Water Quality

    Get PDF
    Presenter: Prof. Joe Ryan, University of Colorado Boulder, Environmental Engineering, AirWaterGas Sustainability Research Network, www.airwatergas.org 28 slide

    SLIDES: What We Know (and Don’t Know) about the Effects of Oil and Gas Development on Water Quality

    Get PDF
    Presenter: Prof. Joe Ryan, University of Colorado Boulder, Environmental Engineering, AirWaterGas Sustainability Research Network, www.airwatergas.org 28 slide

    Photoreceptor Inner Segment Morphology in Best Vitelliform Macular Dystrophy

    Get PDF
    PURPOSE To characterize outer retina structure in best vitelliform macular dystrophy (BVMD) and to determine the effect of macular lesions on overlying and adjacent photoreceptors. METHODS Five individuals with BVMD were followed prospectively with spectral domain optical coherence tomography and confocal and nonconfocal split-detector adaptive optics scanning light ophthalmoscopy (AOSLO). The AOSLO cone photoreceptor mosaic images were obtained within and around retinal lesions. Cone density was measured inside and outside lesions. In 2 subjects, densities were compared with published measurements acquired ∼2.5 years before. One subject was imaged 3 times over a 5-month period. RESULTS The AOSLO imaging demonstrated that photoreceptor morphology within BVMD retinal lesions was highly variable depending on the disease stage, with photoreceptor structure present even in advanced disease. The AOSLO imaging was repeatable even in severe disease over short-time and long-time intervals. Photoreceptor density was normal in retinal areas immediately adjacent to lesions and stable over ∼2.5 years. Mobile disk-like structures possibly representing subretinal macrophages were also observed. CONCLUSION Combined confocal and nonconfocal split-detector AOSLO imaging reveals substantial variability within clinical lesions in all stages of BVMD. Longitudinal cellular photoreceptor imaging could prove a powerful tool for understanding disease progression and monitoring emerging therapeutic treatment response in inherited degenerations such as BVMD

    Comparative calculation of EPR spectral parameters in [Mo^VOX_4]^-, [Mo^VOX_5]^(2-), and [Mo^VOX_4(H_2O)]^- complexes

    Get PDF
    The EPR spectral parameters, i.e. g-tensors and molybdenum hyperfine couplings, for several d^1 systems of the general formula [Mo^VEX_4]^(n-), [Mo^VOX_5]^(2-), and [Mo^VOX_4(H_2O)]^- (E = O, N; X = F, Cl, Br; n = 1 or 2) were calculated using Density Functional Theory. The influence of basis sets, their contraction scheme, the type of exchange-correlation functional, the amount of Hartree-Fock exchange, molecular geometry, and relativistic effects on the calculated EPR spectra parameters have been discussed. The g-tensors and molybdenum hyperfine coupling parameters were calculated using a relativistic Hamiltonian coupled with several LDA, GGA, and 'hybrid' exchange-correlation functionals and uncontracted full-electron DGauss DZVP basis sets. The calculated EPR parameters are found to be sensitive to the Mo=E distance and E=Mo-Cl angle, and thus the choice of starting molecular geometry should be considered as an important factor in predicting the g-tensors and hyperfine coupling constants in oxo-molybdenum compounds. In the present case, the GGA exchange-correlation functionals provide a better agreement between the theory and the experiment

    Ecological and life-history drivers of avian skull evolution

    Get PDF
    One of the most famous examples of adaptive radiation is that of the Galápagos finches, where skull morphology, particularly the beak, varies with feeding ecology. Yet increasingly studies are questioning the strength of this correlation between feeding ecology and morphology in relation to the entire neornithine radiation, suggesting that other factors also significantly affect skull evolution. Here, we broaden this debate to assess the influence of a range of ecological and life history factors, specifically habitat density, migration, and developmental mode, in shaping avian skull evolution. Using 3D geometric morphometric data to robustly quantify skull shape for 354 extant species spanning avian diversity, we fitted flexible phylogenetic regressions and estimated evolutionary rates for each of these factors across the full dataset. The results support a highly significant relationship between skull shape and both habitat density and migration, but not developmental mode. We further found heterogenous rates of evolution between different character states within habitat density, migration, and developmental mode, with rapid skull evolution in species which occupy dense habitats, are migratory, or are precocial. These patterns demonstrate that diverse factors impact the tempo and mode of avian phenotypic evolution, and that skull evolution in birds is not simply a reflection of feeding ecology

    Novel Irradiated Axial Rotational Flap Model in the Rodent

    Get PDF
    Abstract Objectives: To design an easily reproducible rodent rotational skin flap and to evaluate the effects of radiation on flap viability. Methods: Ten rats received 40 Gy irradiation to the abdominal wall. Following a recovery period of one month, a 3 X 8 cm fasciocutaneous flap based axially on the inferior epigastric vessel, was raised and rotated 60 degrees into a contralateral deficit. Five non-irradiated rats underwent the identical procedure as a control. Animals were sacrificed seven days postoperatively, areas of flap necrosis were documented, and histological specimens were taken to compare flap viability and vessel density. Results: 60% of the rats in the irradiated group had necrosis of the distal flap ranging from 1 to 6 cm from the distal edge, whereas none of the animals (0%) in the control group exhibited necrosis (p\u3c0.001). Histology revealed collagen and vascular changes in the irradiated skin. Vascular density analysis revealed a significant difference between radiated and non-radiated flaps; p = 0.004, 0.029 and 0.014 in the distal, middle and proximal segments of the flap respectively. Conclusion: This novel rat axial rotational flap model demonstrates increases flap necrosis and a decrease in vascular density due to the effects of radiation. Using a linear electron accelerator a dose of 40 gy can be delivered to the skin without resulting in devastating gastrointestinal side effects

    The Initial and Final States of Electron and Energy Transfer Processes: Diabatization as Motivated by System-Solvent Interactions

    Get PDF
    For a system which undergoes electron or energy transfer in a polar solvent, we define the diabatic states to be the initial and final states of the system, before and after the nonequilibrium transfer process. We consider two models for the system-solvent interactions: A solvent which is linearly polarized in space and a solvent which responds linearly to the system. From these models, we derive two new schemes for obtaining diabatic states from ab initio calculations of the isolated system in the absence of solvent. These algorithms resemble standard approaches for orbital localization, namely, the Boys and Edmiston–Ruedenberg (ER) formalisms. We show that Boys localization is appropriate for describing electron transfer [ Subotnik et al., J. Chem. Phys. 129, 244101 (2008) ] while ER describes both electron and energy transfer. Neither the Boys nor the ER methods require definitions of donor or acceptor fragments and both are computationally inexpensive. We investigate one chemical example, the case of oligomethylphenyl-3, and we provide attachment/detachment plots whereby the ER diabatic states are seen to have localized electron-hole pairs
    • …
    corecore