2 research outputs found

    FlakiMe: Laboratory-Controlled Test Flakiness Impact Assessment

    Get PDF
    Much research on software testing makes an implicit assumption that test failures are deterministic such that they always witness the presence of the same defects. However, this assumption is not always true because some test failures are due to so-called flaky tests, i.e., tests with non-deterministic outcomes. To help testing researchers better investigate flakiness, we introduce a test flakiness assessment and experimentation platform, called FlakiMe. FlakiMe supports the seeding of a (controllable) degree of flakiness into the behaviour of a given test suite. Thereby, FlakiMe equips researchers with ways to investigate the impact of test flakiness on their techniques under laboratory-controlled conditions. To demonstrate the application of FlakiMe, we use it to assess the impact of flakiness on mutation testing and program repair (the PRAPR and ARJA methods). These results indicate that a 10% flakiness is sufficient to affect the mutation score, but the effect size is modest (2% - 5%), while it reduces the number of patches produced for repair by 20% up to 100% of repair problems; a devastating impact on this application of testing. Our experiments with FlakiMe demonstrate that flakiness affects different testing applications in very different ways, thereby motivating the need for a laboratory-controllable flakiness impact assessment platform and approach such as FlakiMe

    The Importance of Accounting for Real-World Labelling When Predicting Software Vulnerabilities

    Get PDF
    Previous work on vulnerability prediction assume that predictive models are trained with respect to perfect labelling information (includes labels from future, as yet undiscovered vulnerabilities). In this paper we present results from a comprehensive empirical study of 1,898 real-world vulnerabilities reported in 74 releases of three security-critical open source systems (Linux Kernel, OpenSSL and Wiresark). Our study investigates the effectiveness of three previously proposed vulnerability prediction approaches, in two settings: with and without the unrealistic labelling assumption. The results reveal that the unrealistic labelling assumption can profoundly mis- lead the scientific conclusions drawn; suggesting highly effective and deployable prediction results vanish when we fully account for realistically available labelling in the experimental methodology. More precisely, MCC mean values of predictive effectiveness drop from 0.77, 0.65 and 0.43 to 0.08, 0.22, 0.10 for Linux Kernel, OpenSSL and Wiresark, respectively. Similar results are also obtained for precision, recall and other assessments of predictive efficacy. The community therefore needs to upgrade experimental and empirical methodology for vulnerability prediction evaluation and development to ensure robust and actionable scientific findings
    corecore