155 research outputs found

    Perfect vortex beam : Fourier transformation of a Bessel beam

    Get PDF
    We derive a mathematical description of a perfect vortex beam as the Fourier transformation of a Bessel beam. Building on this development, we experimentally generate Bessel-Gauss beams of different orders and Fourier transform them to form perfect vortex beams. By controlling the radial wave vector of a Bessel-Gauss beam, we can control the ring radius of the generated beam. Our theoretical predictions match with the experimental results and also provide an explanation for previous published works. We find the perfect vortex resembles that of an orbital angular momentum (OAM) mode supported in annular profiled waveguides. Our prefect vortex beam generation method can be used to excite OAM modes in an annular core fiber

    Numerical study of a hybrid optical DMT/DFT-S QAM modulation

    Get PDF
    A hybrid modulation offers the peak-to-average power ratio (PAPR) robustness of discrete Fourier transform spread (DFT-S) QAM (quadrature amplitude modulation) with the bit rate optimization of discrete multi-tone (DMT) modulation. We examine via simulation under what circumstances this hybrid can increase achievable bit rate. Hybrid PAPR reduction allows us to increase the peak-to-peak voltage at the modulator electrical input to increase the signal mean power at the modulator output. We propose a methodology to identify the optimal driving strategy. We optimize the bit rate for the available spectrum, i.e., the spectral efficiency, taking into account the bandwidth limited nature of the transmitter. The final optimization we propose is the partition of the available spectrum into a lower frequency band for DFT-S QAM and a higher frequency band for DMT. The modulation level of the DFT-S QAM is also optimized. We compare the optimal hybrid performance versus DMT performance for a range of bit rates for a given modulation bandwidth. Improved performance comes at the cost of greater DSP complexity for the hybrid solution. We compare the number of complex multipliers required to implement hybrid versus DMT for both dispersive and non-dispersive systems

    Fiber transmission demonstrations in vector mode space division multiplexing

    Get PDF
    Much attention has been focused on the use of scalar modes for space division multiplexing (SDM). Alternative vector mode bases offer another solution set for SDM, expanding the available trade-offs in system performance and complexity. We present two types of ring core fiber conceived and designed to explore SDM with fibers exhibiting low interactions between supported modes. We review demonstrations of fiber data transmission for two separate vector mode bases: one for orbital angular momentum (OAM) modes and one for linearly polarized vector (LPV) modes. The OAM mode demonstrations include short transmissions using commercially available transceivers, as well as kilometer length transmission at extended data rates. The LPV demonstrations span kilometer length transmissions at high data rate with coherent detection, as well as a radio over fiber experiment with direct detection of narrowband signals

    Optical fibers for the transmission of orbital angular momentum modes

    Get PDF
    Orbital angular momentum (OAM) of light is a promising means for exploiting the spatial dimension of light to increase the capacity of optical fiber links. We summarize how OAM enables efficient mode multiplexing for optical communications, with emphasis on the design of OAM fibers

    Analytical study of optical SSB-DMT with IMDD

    Get PDF
    We theoretically study the performance of single sideband discrete multitone (SSB-DMT) in the C -band with intensity modulation and direct detection. Our analysis allows us to quantify the impact of different noise sources such as signal-to-signal beating interference, phase-to-amplitude noise, attenuation, and receiver sensitivity on SSB-DMT. Our analytical tools also allow us to optimize the signal-to-carrier power ratio to maximize SSB-DMT throughput. We provide equations to calculate bit error rate of bit allocated SSB-DMT. Finally, we examine various system parameters (laser linewidth, system bandwidth, and fiber length) to determine their impact on the performance of zero guard band SSB-DMT

    Discrete multi-tone transmission with optimized QAM constellations for Short-reach optical communications

    Get PDF
    We investigate performance of optimized M-ary quadrature amplitude modulation (M-QAM) constellations in short-reach single-polarization (SP) and dual-polarization (DP) discrete multitone (DMT) with direct detection. The constellations are obtained by using an iterative gradient-search algorithm. For the nonsquare constellations, we find bit-to-symbol mappings with a blind search method. Our experiments show that the data rate can be improved in both SP and DP DMT systems by using optimized constellations instead of square M-QAM. Net data transmission rates of 165 and 152 Gb/s are respectively achieved for back-to-back and 2.2 km in a direct-detection DP DMT system assuming forward error correction threshold of 3.8×10-3

    Integrated circularly polarized OAM generator and multiplexer for fiber transmission

    Get PDF
    Unlike linearly polarized modes in fiber, modes exploiting orbital angular momentum (OAM) are circularly polarized when propagating in fiber. The use of OAM modes for spatial multiplexing requires efficient, low cost mode generators and multiplexers. We propose such a device based on the standard 220-nm silicon-on-insulator platform, taking multiple single-mode data-modulated signals, and imprinting these signals on right- and left-circularly polarized OAM channels on a single, multiplexed output. The device is designed to easily couple to an OAM fiber with a ring shaped core. This approach treating circular polarization within the multiplexer allows us to avoid the losses associated with filtering out unwanted polarization to create a single polarization. Designing the device to have an output matched to the OAM fiber mode profile also avoids mode size conversion. We describe our design methodology and optimization techniques using a transfer-matrix model and the finite-difference time-domain method. A candidate design is simulated and modal crosstalk is examined, showing that lowcrosstalk OAM multiplexing can be achieved through direct fiberto-chip coupling

    Silicon photonic subsystem for broadband and RoF detection while enabling carrier reuse

    Get PDF
    We experimentally validate a silicon photonic subsystem designed for passive optical networks with carrier reuse. The subsystem is intended for future wavelength division multiplexed (WDM) PONs. It enables radio-over-fiber signals to cohabit an assigned wavelength slot without perturbing the PON signal, and conserving carrier power for the uplink. A microring modulator remodulates the residual carrier for the RoF uplink. We successfully detected the dropped an 8 GHz broadband signal and five 125 MHz radio-over-fiber signals. Two 125 MHz radio over fiber signals are remodulated onto the carrier. The uplink signal shows good performance, validating the residual downlink signals have been well rejected by the microring filters. The subsystem conserves a clean carrier for remodulation with good signal-to-carrier ratio

    SiP-based SSBI cancellation for OFDM

    Get PDF
    We propose for the first time to use a silicon photonics (SiP) solution for a passive optical network to both reduce signal-signal beat interference (SSBI) and recuperate a part of the downlink carrier for use in the uplink. The Kramers-Kronig (KK) receiver for direct detection of advanced modulation formats overcomes SSBI at the cost of a moderate carrier to signal ratio (>6 dB) and high oversampling (4X). We propose an optical SSBI solution that achieves better performance than KK and requires only standard sampling and low (3 dB) carrier to signal power ratio. The receiver is conceived for the downlink in passive optical networks, where carrier signal must be husbanded for re-use in the uplink. Using cost effective and power efficient SiP, the receiver filters the incoming signal, suppresses SSBI, and routes a portion of the carrier for use in the uplink. We experimentally examine the SSBI suppression in this paper. While previous demonstrations used bulky, discrete components, we achieve significant Q-factor improvement with a simple SiP solution. We examine the optimal frequency offset between the carrier and the microring resonator center frequency. The robustness to frequency drift, as well as the impact of imperfect filtering, is discussed and quantified

    OAM mode selection for high-speed optical communications : a bit loading approach

    Get PDF
    Occupying more channels increases transmission rate, however, crosstalk increases to an unacceptable level long before all 24 channels can be exploited. The crosstalk is not uniform between modes, hence occupying different subsets of channels leads to vastly different achievable transmission capacities. In addition to optimizing occupied subsets of channels, we adopt a bit loading approach. We examine several resource allocation strategies in a coherent detection system, starting with typical OAM mode group granularity (all channels in a group occupied) and ending with single channel granularity. By exhaustive search at mode group granularity, we find a bit load increasing the total capacity by ∼15% compared to a minimax solution for mode group allocation. Single channel granularity imposes great computational effort to optimize bit loading. We propose search algorithms that are computationally tractable and improve capacity by ∼30% vis-àvis the minimax solution for mode groups. Finally, we examine the impact of signal-to-noise ratio (SNR) and receiver digital signal processing (DSP) complexity on the overall capacity. We include a discussion of DSP with limited or with no multi-input, multioutput (MIMO) processing.Our algorithms could be applied to any mode multiplexing fiber, as it only relies on knowledge of the crosstalk matrix across modes
    • …
    corecore