7 research outputs found

    A neural network for semantic labelling of structured information

    Get PDF
    Intelligent systems rely on rich sources of information to make informed decisions. Using information from external sources requires establishing correspondences between the information and known information classes. This can be achieved with semantic labelling, which assigns known labels to structured information by classifying it according to computed features. The existing proposals have explored different sets of features, without focusing on what classification techniques are used. In this paper we present three contributions: first, insights on architectural issues that arise when using neural networks for semantic labelling; second, a novel implementation of semantic labelling that uses a state-of-the-art neural network classifier which achieves significantly better results than other four traditional classifiers; third, a comparison of the results obtained by the former network when using different subsets of features, comparing textual features to structural ones, and domain-dependent features to domain-independent ones. The experiments were carried away with datasets from three real world sources. Our results show that there is a need to develop more semantic labelling proposals with sophisticated classification techniques and large features catalogues.Ministerio de Economía y Competitividad TIN2016-75394-

    TAPON: a two-phase machine learning approach for semantic labelling

    Get PDF
    Through semantic labelling we enrich structured information from sources such as HTML pages, tables, or JSON files, with labels to integrate it into a local ontology. This process involves measuring some features of the information and then nding the classes that best describe it. The problem with current techniques is that they do not model relationships between classes. Their features fall short when some classes have very similar structures or textual formats. In order to deal with this problem, we have devised TAPON: a new semantic labelling technique that computes novel features that take into account the relationships. TAPON computes these features by means of a two-phase approach. In the first phase, we compute simple features and obtain a preliminary set of labels (hints). In the second phase, we inject our novel features and obtain a refined set of labels. Our experimental results show that our technique, thanks to our rich feature catalogue and novel modelling, achieves higher accuracy than other state-of-the-art techniques.Ministerio de Economía y Competitividad TIN2016-75394-

    AYNEC: All you need for evaluating completion techniques in knowledge graphs

    Get PDF
    The popularity of knowledge graphs has led to the development of techniques to refine them and increase their quality. One of the main refinement tasks is completion (also known as link prediction for knowledge graphs), which seeks to add missing triples to the graph, usually by classifying potential ones as true or false. While there is a wide variety of graph completion techniques, there is no standard evaluation setup, so each proposal is evaluated using different datasets and metrics. In this paper we present AYNEC, a suite for the evaluation of knowledge graph completion techniques that covers the entire evaluation workflow. It includes a customisable tool for the generation of datasets with multiple variation points related to the preprocessing of graphs, the splitting into training and testing examples, and the generation of negative examples. AYNEC also provides a visual summary of the graph and the optional exportation of the datasets in an open format for their visualisation. We use AYNEC to generate a library of datasets ready to use for evaluation purposes based on several popular knowledge graphs. Finally, it includes a tool that computes relevant metrics and uses significance tests to compare each pair of techniques. These open source tools, along with the datasets, are freely available to the research community and will be maintained.Ministerio de Economía y Competitividad TIN2016-75394-

    Advances in a DSL for Application Integration

    Get PDF
    Enterprise Application Integration (EAI) is currently one of the big challenges for Software Engineering. According to a recent report, for each dollar spent on developing an application, companies usually spend from 5 to 20 dollars to integrate it. In this paper, we propose a Domain Specific Language (DSL) for designing application integration solutions. It builds on our experience on two real-world integration projects

    Automated analysis of feature models: Quo vadis?

    Get PDF
    Feature models have been used since the 90's to describe software product lines as a way of reusing common parts in a family of software systems. In 2010, a systematic literature review was published summarizing the advances and settling the basis of the area of Automated Analysis of Feature Models (AAFM). From then on, different studies have applied the AAFM in different domains. In this paper, we provide an overview of the evolution of this field since 2010 by performing a systematic mapping study considering 423 primary sources. We found six different variability facets where the AAFM is being applied that define the tendencies: product configuration and derivation; testing and evolution; reverse engineering; multi-model variability-analysis; variability modelling and variability-intensive systems. We also confirmed that there is a lack of industrial evidence in most of the cases. Finally, we present where and when the papers have been published and who are the authors and institutions that are contributing to the field. We observed that the maturity is proven by the increment in the number of journals published along the years as well as the diversity of conferences and workshops where papers are published. We also suggest some synergies with other areas such as cloud or mobile computing among others that can motivate further research in the future.Ministerio de Economía y Competitividad TIN2015-70560-RJunta de Andalucía TIC-186
    corecore