2,252 research outputs found

    Jointly Modeling Embedding and Translation to Bridge Video and Language

    Full text link
    Automatically describing video content with natural language is a fundamental challenge of multimedia. Recurrent Neural Networks (RNN), which models sequence dynamics, has attracted increasing attention on visual interpretation. However, most existing approaches generate a word locally with given previous words and the visual content, while the relationship between sentence semantics and visual content is not holistically exploited. As a result, the generated sentences may be contextually correct but the semantics (e.g., subjects, verbs or objects) are not true. This paper presents a novel unified framework, named Long Short-Term Memory with visual-semantic Embedding (LSTM-E), which can simultaneously explore the learning of LSTM and visual-semantic embedding. The former aims to locally maximize the probability of generating the next word given previous words and visual content, while the latter is to create a visual-semantic embedding space for enforcing the relationship between the semantics of the entire sentence and visual content. Our proposed LSTM-E consists of three components: a 2-D and/or 3-D deep convolutional neural networks for learning powerful video representation, a deep RNN for generating sentences, and a joint embedding model for exploring the relationships between visual content and sentence semantics. The experiments on YouTube2Text dataset show that our proposed LSTM-E achieves to-date the best reported performance in generating natural sentences: 45.3% and 31.0% in terms of BLEU@4 and METEOR, respectively. We also demonstrate that LSTM-E is superior in predicting Subject-Verb-Object (SVO) triplets to several state-of-the-art techniques

    Learning Multi-Level Information for Dialogue Response Selection by Highway Recurrent Transformer

    Get PDF
    With the increasing research interest in dialogue response generation, there is an emerging branch formulating this task as selecting next sentences, where given the partial dialogue contexts, the goal is to determine the most probable next sentence. Following the recent success of the Transformer model, this paper proposes (1) a new variant of attention mechanism based on multi-head attention, called highway attention, and (2) a recurrent model based on transformer and the proposed highway attention, so-called Highway Recurrent Transformer. Experiments on the response selection task in the seventh Dialog System Technology Challenge (DSTC7) show the capability of the proposed model of modeling both utterance-level and dialogue-level information; the effectiveness of each module is further analyzed as well
    • …
    corecore