9 research outputs found

    The Type 2 Diabetes Knowledge Portal: an open access genetic resource dedicated to type 2 diabetes and related traits

    Get PDF
    Associations between human genetic variation and clinical phenotypes have become a foundation of biomedical research. Most repositories of these data seek to be disease-agnostic and therefore lack disease-focused views. The Type 2 Diabetes Knowledge Portal (T2DKP) is a public resource of genetic datasets and genomic annotations dedicated to type 2 diabetes (T2D) and related traits. Here, we seek to make the T2DKP more accessible to prospective users and more useful to existing users. First, we evaluate the T2DKP's comprehensiveness by comparing its datasets with those of other repositories. Second, we describe how researchers unfamiliar with human genetic data can begin using and correctly interpreting them via the T2DKP. Third, we describe how existing users can extend their current workflows to use the full suite of tools offered by the T2DKP. We finally discuss the lessons offered by the T2DKP toward the goal of democratizing access to complex disease genetic results

    knowledge Modeling Semantic Web SBML

    No full text
    Abstract A large and growing network (‘‘cloud’’) of interlinked terms and records of items of Systems Biology knowledge is available from the web. These items include pathways, reactions, substances, literature references, organisms, and anatomy, all described in different data sets. Here, we discuss how the knowledge from the cloud can be molded into representations (views) useful for data visualization and modeling. We discuss methods to create and use various views relevant for visualization, modeling, and model annotations, while hiding irrelevant details without unacceptable loss or distortion. We show that views are compatible with understanding substances and processes as sets of microscopic compounds and events respectively, which allows the representation of specializations and generalizations as subsets and supersets respectively. We explain how these methods can be implemented based on the bridging ontology System
    corecore