155 research outputs found

    Genome-Wide Analysis of Nucleotide-Level Variation in Commonly Used Saccharomyces cerevisiae Strains

    Get PDF
    Ten years have passed since the genome of Saccharomyces cerevisiae–more precisely, the S288c strain–was completely sequenced. However, experimental work in yeast is commonly performed using strains that are of unknown genetic relationship to S288c. Here, we characterized the nucleotide-level similarity between S288c and seven commonly used lab strains (A364A, W303, FL100, CEN.PK, ∑1278b, SK1 and BY4716) using 25mer oligonucleotide microarrays that provide complete and redundant coverage of the ∼12 Mb Saccharomyces cerevisiae genome. Using these data, we assessed the frequency and distribution of nucleotide variation in comparison to the sequenced reference genome. These data allow us to infer the relationships between experimentally important strains of yeast and provide insight for experimental designs that are sensitive to sequence variation. We propose a rational approach for near complete sequencing of strains related to the reference using these data and directed re-sequencing. These data and new visualization tools are accessible online in a new resource: the Yeast SNPs Browser (YSB; http://gbrowse.princeton.edu/cgi-bin/gbrowse/yeast_strains_snps) that is available to all researchers

    Sex differences in the genetic architecture of cognitive resilience to Alzheimer\u27s disease.

    Get PDF
    Approximately 30% of elderly adults are cognitively unimpaired at time of death despite the presence of Alzheimer\u27s disease neuropathology at autopsy. Studying individuals who are resilient to the cognitive consequences of Alzheimer\u27s disease neuropathology may uncover novel therapeutic targets to treat Alzheimer\u27s disease. It is well established that there are sex differences in response to Alzheimer\u27s disease pathology, and growing evidence suggests that genetic factors may contribute to these differences. Taken together, we sought to elucidate sex-specific genetic drivers of resilience. We extended our recent large scale genomic analysis of resilience in which we harmonized cognitive data across four cohorts of cognitive ageing, in vivo amyloid PET across two cohorts, and autopsy measures of amyloid neuritic plaque burden across two cohorts. These data were leveraged to build robust, continuous resilience phenotypes. With these phenotypes, we performed sex-stratified [n (males) = 2093, n (females) = 2931] and sex-interaction [n (both sexes) = 5024] genome-wide association studies (GWAS), gene and pathway-based tests, and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to resilience in a sex-specific manner. Estimated among cognitively normal individuals of both sexes, resilience was 20-25% heritable, and when estimated in either sex among cognitively normal individuals, resilience was 15-44% heritable. In our GWAS, we identified a female-specific locus on chromosome 10 [rs827389, β (females) = 0.08, P (females) = 5.76 × 10-09, β (males) = -0.01, P(males) = 0.70, β (interaction) = 0.09, P (interaction) = 1.01 × 10-04] in which the minor allele was associated with higher resilience scores among females. This locus is located within chromatin loops that interact with promoters of genes involved in RNA processing, including GATA3. Finally, our genetic correlation analyses revealed shared genetic architecture between resilience phenotypes and other complex traits, including a female-specific association with frontotemporal dementia and male-specific associations with heart rate variability traits. We also observed opposing associations between sexes for multiple sclerosis, such that more resilient females had a lower genetic susceptibility to multiple sclerosis, and more resilient males had a higher genetic susceptibility to multiple sclerosis. Overall, we identified sex differences in the genetic architecture of resilience, identified a female-specific resilience locus and highlighted numerous sex-specific molecular pathways that may underly resilience to Alzheimer\u27s disease pathology. This study illustrates the need to conduct sex-aware genomic analyses to identify novel targets that are unidentified in sex-agnostic models. Our findings support the theory that the most successful treatment for an individual with Alzheimer\u27s disease may be personalized based on their biological sex and genetic context

    Genetic variants and functional pathways associated with resilience to Alzheimer\u27s disease.

    Get PDF
    Approximately 30% of older adults exhibit the neuropathological features of Alzheimer\u27s disease without signs of cognitive impairment. Yet, little is known about the genetic factors that allow these potentially resilient individuals to remain cognitively unimpaired in the face of substantial neuropathology. We performed a large, genome-wide association study (GWAS) of two previously validated metrics of cognitive resilience quantified using a latent variable modelling approach and representing better-than-predicted cognitive performance for a given level of neuropathology. Data were harmonized across 5108 participants from a clinical trial of Alzheimer\u27s disease and three longitudinal cohort studies of cognitive ageing. All analyses were run across all participants and repeated restricting the sample to individuals with unimpaired cognition to identify variants at the earliest stages of disease. As expected, all resilience metrics were genetically correlated with cognitive performance and education attainment traits (P-values \u3c 2.5 × 10-20), and we observed novel correlations with neuropsychiatric conditions (P-values \u3c 7.9 × 10-4). Notably, neither resilience metric was genetically correlated with clinical Alzheimer\u27s disease (P-values \u3e 0.42) nor associated with APOE (P-values \u3e 0.13). In single variant analyses, we observed a genome-wide significant locus among participants with unimpaired cognition on chromosome 18 upstream of ATP8B1 (index single nucleotide polymorphism rs2571244, minor allele frequency = 0.08, P = 2.3 × 10-8). The top variant at this locus (rs2571244) was significantly associated with methylation in prefrontal cortex tissue at multiple CpG sites, including one just upstream of ATPB81 (cg19596477; P = 2 × 10-13). Overall, this comprehensive genetic analysis of resilience implicates a putative role of vascular risk, metabolism, and mental health in protection from the cognitive consequences of neuropathology, while also providing evidence for a novel resilience gene along the bile acid metabolism pathway. Furthermore, the genetic architecture of resilience appears to be distinct from that of clinical Alzheimer\u27s disease, suggesting that a shift in focus to molecular contributors to resilience may identify novel pathways for therapeutic targets

    Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol

    Get PDF
    Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98th or <2nd percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments

    Genome-wide association analysis of red blood cell traits in African Americans: the COGENT Network

    Get PDF
    Laboratory red blood cell (RBC) measurements are clinically important, heritable and differ among ethnic groups. To identify genetic variants that contribute to RBC phenotypes in African Americans (AAs), we conducted a genome-wide association study in up to ∼16 500 AAs. The alpha-globin locus on chromosome 16pter [lead SNP rs13335629 in ITFG3 gene; P < 1E−13 for hemoglobin (Hgb), RBC count, mean corpuscular volume (MCV), MCH and MCHC] and the G6PD locus on Xq28 [lead SNP rs1050828; P < 1E − 13 for Hgb, hematocrit (Hct), MCV, RBC count and red cell distribution width (RDW)] were each associated with multiple RBC traits. At the alpha-globin region, both the common African 3.7 kb deletion and common single nucleotide polymorphisms (SNPs) appear to contribute independently to RBC phenotypes among AAs. In the 2p21 region, we identified a novel variant of PRKCE distinctly associated with Hct in AAs. In a genome-wide admixture mapping scan, local European ancestry at the 6p22 region containing HFE and LRRC16A was associated with higher Hgb. LRRC16A has been previously associated with the platelet count and mean platelet volume in AAs, but not with Hgb. Finally, we extended to AAs the findings of association of erythrocyte traits with several loci previously reported in Europeans and/or Asians, including CD164 and HBS1L-MYB. In summary, this large-scale genome-wide analysis in AAs has extended the importance of several RBC-associated genetic loci to AAs and identified allelic heterogeneity and pleiotropy at several previously known genetic loci associated with blood cell traits in AAs

    Gene expression imputation across multiple brain regions provides insights into schizophrenia risk

    Get PDF
    Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression
    • …
    corecore