19 research outputs found
Formation of nanostructured carbon coatings by laser dispersion of the target based on a polymer and metal formats
The study considers a complex technique for developing nanostructured carbon coatings, which consists in the deposition of a sublayer based on polymer and metal formates, subsequent heat treatment, and further deposition of carbon layers from the plasma of a pulsed cathode-arc discharge
Definitive observation of the dark triplet ground state of charged excitons in high magnetic fields
The ground state of negatively charged excitons (trions) in high magnetic
fields is shown to be a dark triplet state, confirming long-standing
theoretical predictions. Photoluminescence (PL), reflection, and PL excitation
spectroscopy of CdTe quantum wells reveal that the dark triplet trion has lower
energy than the singlet trion above 24 Tesla. The singlet-triplet crossover is
"hidden" (i.e., the spectral lines themselves do not cross due to different
Zeeman energies), but is confirmed by temperature-dependent PL above and below
24 T. The data also show two bright triplet states.Comment: 4 figure
Stability of the platinum electrode during high temperature annealing
The modifications of the structure, electrical resistivity and surface morphology of platinum thin films on Pt/Ti/Si and Pt/TiO2/boron-phosphor-silicate glass/Si structures resulted from high-temperature annealing in the presence of oxygen were studied. It was established that regardless of the sublayers used while annealing caused platinum to recrystallize and texturize in the direction [111], and the texture is suppressed in the directions [200] and [220]. The annealing caused the drop of the volume resistivity of thin films from 0.2 to ca. 0.15 ΞΌOhmΓm, and practically shown no dependence on the film thickness in case it exceeded 200 nm.
As a result of recrystallization Pt films became unsmooth at low annealing temperatures and as the temperature increased hillocks were formed on the film surface. Relaxation of the compressive stress in the Pt film, facilitating the reduction of its free energy and modification of the lattice parameter towards the equilibrium value, is known to be the major hillock formation mechanism. The level of intrinsic stress in the film and the annealing temperature both determine the initial hillock formation. The final hillock height, density, and size are related to the Pt layer thickness, sublayer structure, and to the annealing time and temperature. Optimization of the sublayer structure and annealing modes makes it possible to increase the annealing temperature to ca. 780Β°Π‘ without causing any substantial damages to Pt microrelief. That enables us to use these structures as the bottom electrode in ferroelectric memory cells
Π Π΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΡΠΉ ΡΡΠΈΠ»ΠΈΡΠ΅Π»Ρ ΡΠΈΡΠΏΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠ΅ΠΌΡΠΎΡΠ΅ΠΊΡΠ½Π΄Π½ΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΡΠΈΡΡΠ°Π»Π»Π° Yb:CALYO Π΄Π»Ρ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ Π²ΠΎΠ·Π±ΡΠΆΠ΄Π΅Π½ΠΈΡ-Π·ΠΎΠ½Π΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Ρ Π²ΡΡΠΎΠΊΠΈΠΌ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ
Diode-pumped femtosecond chirped pulse regenerative amplifiers based on Yb3+-materials are of practical importance for wide range of scientific, industrial and biomedical applications. The aim of this work was to study the amplification of broadband chirped femtosecond pulses in regenerative amplifier based on Yb3+:CaYAlO4 crystal.Such systems use femtosecond mode-locked lasers as seed pulse sources and amplify nJ-seed pulses to sub-mJ energy range. Most chirped pulse regenerative amplifier systems described in the literature use seed lasers with typical pulse spectral width at the level of 10β15 nm full width at half maximum (FWHM) that limit the seed pulse duration of about 90 fs and amplified pulse duration at the level of 200 fs due to strong influence of gain narrowing effect on the amplified pulse parameters. Yb3+-doped crystals with wide and smooth gain bandwidth as an active medium of chirped femtosecond pulse regenerative amplification systems allow to reduce negative contribution of gain narrowing effect and lead to shortening of amplified pulses. In this research we study the chirped pulse regenerative amplification of broad-band femtosecond pulses (60 nm spectral width FWHM) in the Yb3+:CaYAlO -based chirped pulse regenerative amplifier. Substantial reduction of the amplified pulse duration down to 120 fs (19.4 nm spectral width FWHM) with average power of 3 W at 200 kHz pulse repetition frequency was demonstrated without any gain narrowing compensation technique.The results of experimental investigation of broad-band seeded Yb3+:CaYAlO -based chirped pulse regenerative amplifier are reported for the first time to our knowledge. 120 fs-pulses (19.4 nm FWHM) with average output power of 3 W were demonstrated without any gain narrowing compensation technique. Despite the significant reduction of amplified pulse duration the task of improvement group velocity dispersion balance (including high orders of group velocity dispersion) remains relevant.Π Π΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΡΠ΅ ΡΡΠΈΠ»ΠΈΡΠ΅Π»ΠΈ ΡΠΈΡΠΏΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ΅ΠΌΡΠΎΡΠ΅ΠΊΡΠ½Π΄Π½ΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Ρ ΠΈΠΎΠ½Π°ΠΌΠΈ Yb3+Β Ρ Π΄ΠΈΠΎΠ΄Π½ΠΎΠΉ Π½Π°ΠΊΠ°ΡΠΊΠΎΠΉ Π½Π°ΡΠ»ΠΈ ΡΠΈΡΠΎΠΊΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΎΡΡΠ°ΡΠ»ΡΡ
Π½Π°ΡΠΊΠΈ, ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΠΈ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Ρ. Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ»ΠΎΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΠΆΠΈΠΌΠ° ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΡΠΈΠ»Π΅Π½ΠΈΡ ΡΠΈΡΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΡΡ
ΡΠΈΡΠΏΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ΅ΠΌΡΠΎΡΠ΅ΠΊΡΠ½Π΄Π½ΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π² ΡΡΠΈΠ»ΠΈΡΠ΅Π»Π΅ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΡΠΈΡΡΠ°Π»Π»Π° Yb3+:CaYAlO . ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π·Π°Π΄Π°ΡΡΠ΅Π³ΠΎ Π³Π΅Π½Π΅ΡΠ°ΡΠΎΡΠ° Π»Π°Π·Π΅Ρ Ρ ΠΏΠ°ΡΡΠΈΠ²Π½ΠΎΠΉ ΡΠΈΠ½Ρ
ΡΠΎΠ½ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ ΠΌΠΎΠ΄, Π΄Π°Π½Π½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΡΡΠΈΠ»ΠΈΠ²Π°ΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΡ Π½Π°Π½ΠΎΠ΄ΠΆΠΎΡΠ»Π΅Π²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° ΡΠ½Π΅ΡΠ³ΠΈΠΉ Π΄ΠΎ ΡΡΠ±ΠΌΠΈΠ»ΠΈΠ΄ΠΆΠΎΡΠ»Π΅Π²ΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ Π±Π»Π°Π³ΠΎΠ΄Π°ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ΅ ΡΡΠΈΠ»Π΅Π½ΠΈΡ ΡΠΈΡΠΏΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ². ΠΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ ΠΎΠΏΠΈΡΠ°Π½Π½ΡΡ
Π² Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ ΡΠΈΡΡΠ΅ΠΌ ΡΡΠΈΠ»Π΅Π½ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π·Π°Π΄Π°ΡΡΠΈΠ΅ Π³Π΅Π½Π΅ΡΠ°ΡΠΎΡΡ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠΈΠ΅ ΡΠ΅ΠΌΡΠΎΡΠ΅ΠΊΡΠ½Π΄Π½ΡΠ΅ ΠΈΠΌΠΏΡΠ»ΡΡΡ ΡΠΎ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ»ΡΡΠΈΡΠΈΠ½ΠΎΠΉ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 10β15 Π½ΠΌ, ΡΡΠΎ ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΠ²Π°Π΅Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΡ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π·Π°Π΄Π°ΡΡΠΈΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π½Π° ΡΡΠΎΠ²Π½Π΅ 90 ΡΡ. Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΡΠΈΠ»Π΅Π½ΠΈΡ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΡΡΠΈΠ»Π΅Π½Π½ΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ Π΄ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΎΠΊΠΎΠ»ΠΎ 200 ΡΡ, ΡΡΠΎ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΡΠΈΠ»ΡΠ½ΡΠΌ Π½Π΅Π³Π°ΡΠΈΠ²Π½ΡΠΌ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ ΡΡΡΠ΅ΠΊΡΠ° ΡΡΠΆΠ΅Π½ΠΈΡ ΡΠΏΠ΅ΠΊΡΡΠ° ΠΈΠΌΠΏΡΠ»ΡΡΠ° ΠΏΠΎΠ΄ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΠΏΠΎΠ»ΠΎΡΡ ΡΡΠΈΠ»Π΅Π½ΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ ΡΡΠΈΠ»ΠΈΡΠ΅Π»Ρ. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΎΠ², ΠΈΠΌΠ΅ΡΡΠΈΡ
ΡΠΈΡΠΎΠΊΠΈΠ΅ ΠΈ Π³Π»Π°Π΄ΠΊΠΈΠ΅ ΠΏΠΎΠ»ΠΎΡΡ ΡΡΠΈΠ»Π΅Π½ΠΈΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π°ΠΊΡΠΈΠ²Π½ΡΡ
ΡΡΠ΅Π΄ ΡΠΈΡΡΠ΅ΠΌ ΡΡΠΈΠ»Π΅Π½ΠΈΡ ΡΠΈΡΠΏΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ΅ΠΌΡΠΎΡΠ΅ΠΊΡΠ½Π΄Π½ΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΡΠΈΡΠΎΠΊΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ½ΠΈΠ·ΠΈΡΡ Π½Π΅Π³Π°ΡΠΈΠ²Π½ΡΠΉ Π²ΠΊΠ»Π°Π΄ ΡΡΡΠ΅ΠΊΡΠ° ΡΡΠΆΠ΅Π½ΠΈΡ ΡΠΏΠ΅ΠΊΡΡΠ° ΠΈΠΌΠΏΡΠ»ΡΡΠ° ΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΡΠΈΠ»Π΅Π½Π½ΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ². Π ΡΠ°Π±ΠΎΡΠ΅ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΠΆΠΈΠΌΠ° ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΡΠΈΠ»Π΅Π½ΠΈΡ ΡΠΈΡΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΡΡ
ΡΠΈΡΠΏΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ΅ΠΌΡΠΎΡΠ΅ΠΊΡΠ½Π΄Π½ΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π² ΡΡΠΈΠ»ΠΈΡΠ΅Π»Π΅ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΡΠΈΡΡΠ°Π»Π»Π° Yb3+:CaYAlO . ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΠΈΠΌΠΏΡΠ»ΡΡΡ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ 120 ΡΡ (ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½Π°Ρ ΠΏΠΎΠ»ΡΡΠΈΡΠΈΠ½Π° 19,4 Π½ΠΌ) ΡΠΎ ΡΡΠ΅Π΄Π½Π΅ΠΉ Π²ΡΡ
ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΡΠΈΠ»Π΅Π½ΠΈΡ 3 ΠΡ Π±Π΅Π· ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΈ ΡΡΡΠ΅ΠΊΡΠ° ΡΡΠΆΠ΅Π½ΠΈΡ ΡΠΏΠ΅ΠΊΡΡΠ° ΡΡΠΈΠ»ΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ°
Π Π΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΡΠΉ ΡΡΠΈΠ»ΠΈΡΠ΅Π»Ρ ΡΠΈΡΠΏΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π½Π° ΠΊΡΠΈΡΡΠ°Π»Π»Π΅ Yb3+:LuAlO3 Ρ ΡΡΠΈΠ»Π΅Π½ΠΈΠ΅ΠΌ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ Π΄Π»Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² ΡΠ΅ΡΠ°Π³Π΅ΡΡΠΎΠ²ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠΏΠ΅ΠΊΡΡΠ°
Compact diode-pumped chirped pulse regenerative amplifier systems with pulse repetition rate of hundreds kilohertz based on Yb3+-doped crystals are of practical importance for wide range of applications such as materials processing, medicine, scientific research, etc. The aim of this work was to study the Yb3+:LuAlO crystal based dual wavelength chirped pulse regenerative amplifier.Perovskite-like aluminate crystals have unique spectroscopic properties that allowed to use amplifier active element gain spectrum as an amplitude filter for amplified pulse spectrum and even obtained dual wavelength amplification without any additional components.In our work a simple way to obtain dual-wavelength operation of chirped pulse regenerative amplifier by using the active medium gain spectrum as an amplitude filter for the formation of the amplified pulses spectrum demonstrated for the first time to our knowledge. Maximum output power of 5.4 W of chirped pulses (3.8 W after compression) and optical-to-optical efficiency of 22.5 % have been obtained for Yb:LuAP E//b-polarization at 200 kHz repetition rate. Compressed amplified pulse duration was about 708 fs while separate spectral components durations were 643 fs and 536 fs at 1018.3 nm and 1041.1 nm central wavelengths, respectively. Performed investigations show high potential of Yb3+:LuAP crystals as active elements of compact diode pumped chirped pulse regenerative amplifiersΠΠΎΠΌΠΏΠ°ΠΊΡΠ½ΡΠ΅ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΡΠ΅ ΡΡΠΈΠ»ΠΈΡΠ΅Π»ΠΈ ΡΠΈΡΠΏΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Ρ Π΄ΠΈΠΎΠ΄Π½ΠΎΠΉ Π½Π°ΠΊΠ°ΡΠΊΠΎΠΉ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠΈΠ΅ ΡΠ°ΡΡΠΎΡΡ ΠΏΠΎΠ²ΡΠΎΡΠ΅Π½ΠΈΡ ΡΡΠΈΠ»Π΅Π½Π½ΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π² ΡΠΎΡΠ½ΠΈ ΠΊΠΈΠ»ΠΎΠ³Π΅ΡΡ, ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΡΠ΅ Π½Π° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°Ρ
, Π»Π΅Π³ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΈΠΎΠ½Π°ΠΌΠΈ Yb3+, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ Π΄Π»Ρ ΡΠΈΡΠΎΠΊΠΎΠ³ΠΎ ΡΡΠ΄Π° Π½Π°ΡΡΠ½ΡΡ
, ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΡΡ
ΠΈ Π±ΠΈΠΎΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΡ
ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΉ. Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ»ΠΎΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΡΠΈΠ»ΠΈΡΠ΅Π»Ρ Π½Π° ΠΊΡΠΈΡΡΠ°Π»Π»Π΅ Yb3+:LuAlO3 Ρ ΡΡΠΈΠ»Π΅Π½ΠΈΠ΅ΠΌ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π·Π°Π΄Π°ΡΡΠ΅Π³ΠΎ Π»Π°Π·Π΅ΡΠ°.ΠΡΠΈΡΡΠ°Π»Π»Ρ Π°Π»ΡΠΌΠΈΠ½Π°ΡΠΎΠ² ΡΠΎ ΡΡΡΡΠΊΡΡΡΠΎΠΉ ΠΏΠ΅ΡΠΎΠ²ΡΠΊΠΈΡΠ° ΠΎΠ±Π»Π°Π΄Π°ΡΡ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠΏΠ΅ΠΊΡΡ ΡΡΠΈΠ»Π΅Π½ΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΡΠΈΠ»ΠΈΡΠ΅Π»Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π½ΠΎΠ³ΠΎ ΡΠΈΠ»ΡΡΡΠ° ΠΈ ΡΡΠΈΠ»ΠΈΠ²Π°ΡΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΡΡΠ°ΡΡΠΊΠΈ ΡΠΏΠ΅ΠΊΡΡΠ° ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π·Π°Π΄Π°ΡΡΠ΅Π³ΠΎ Π»Π°Π·Π΅ΡΠ° Π±Π΅Π· ΠΊΠ°ΠΊΠΈΡ
-Π»ΠΈΠ±ΠΎ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ².Π Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ ΠΏΡΠΎΡΡΠΎΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠΏΠ΅ΠΊΡΡ ΡΡΠΈΠ»Π΅Π½ΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΡΠΈΠ»ΠΈΡΠ΅Π»Ρ ΠΊΠ°ΠΊ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π½ΡΠΉ ΡΠΈΠ»ΡΡΡ Π΄Π»Ρ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΏΠ΅ΠΊΡΡΠ° ΡΡΠΈΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ° Π² Π²ΠΈΠ΄Π΅ ΡΠΏΠ΅ΠΊΡΡΠ° ΡΠΎΡΡΠΎΡΡΠ΅Π³ΠΎ ΠΈΠ· ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΠΏΠΎΠ»ΠΎΡ. ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ ΡΡΠ΅Π΄Π½ΡΡ Π²ΡΡ
ΠΎΠ΄Π½Π°Ρ ΠΌΠΎΡΠ½ΠΎΡΡΡ 5,4 ΠΡ (3,8 ΠΡ ΠΏΠΎΡΠ»Π΅ ΠΊΠΎΠΌΠΏΡΠ΅ΡΡΠΎΡΠ°) Ρ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ 22,5 % ΠΏΠΎΠ»ΡΡΠ΅Π½Π° Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠΈΠ·Π°ΡΠΈΠΈ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈΒ bΒ ΠΊΡΠΈΡΡΠ°Π»Π»Π° Yb:LuAP ΠΏΡΠΈ ΡΠ°ΡΡΠΎΡΠ΅ ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² 200 ΠΊΠΡ. ΠΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΡΠΆΠ°ΡΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° 708 ΡΡ ΠΏΡΠΈ ΡΡΠ΅ΡΠ΅ Π²Π»ΠΈΡΠ½ΠΈΡ Π²ΡΠ΅Ρ
ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ, ΠΈ 643 ΡΡ ΠΈ 536 ΡΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎ Π΄Π»Ρ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ Ρ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΠΌΠΈ Π΄Π»ΠΈΠ½Π°ΠΌΠΈ Π²ΠΎΠ»Π½ 1018,3 Π½ΠΌ ΠΈ 1041,1 Π½ΠΌ. ΠΡΠΎΠ²Π΅Π΄ΡΠ½Π½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ Π²ΡΡΠΎΠΊΠΈΠΉ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π» ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΊΡΠΈΡΡΠ°Π»Π»Π° Yb3+:LuAP Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° ΠΊΠΎΠΌΠΏΠ°ΠΊΡΠ½ΡΡ
ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΡΡ
ΡΡΠΈΠ»ΠΈΡΠ΅Π»Π΅ΠΉ ΡΠΈΡΠΏΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Ρ Π΄ΠΈΠΎΠ΄Π½ΠΎΠΉ Π½Π°ΠΊΠ°ΡΠΊΠΎΠΉ
ΠΠ ΠΠ‘ΠΠΠΠ ΠΠ ΠΠ‘Π’ΠΠΠΠ Yb3+:KGd(WO4)2 Π‘ ΠΠΠΠΠΠΠ ΠΠΠΠΠ§ΠΠΠ
The regenerative amplification system of femtosecond laser pulses, delivering a laser pulses with peak power more then 1 GW and duration <330 fs at repetition rates 1β10 kHz is presented. This system is applicable in pump-probe spectroscopy with high temporal resolution, as well as for pumping of optical parametric oscillators for generation of infrared femtosecond pulses.ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° ΡΠΈΡΡΠ΅ΠΌΠ° ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΡΠΈΠ»Π΅Π½ΠΈΡ ΡΠ΅ΠΌΡΠΎΡΠ΅ΠΊΡΠ½Π΄Π½ΡΡ
Π»Π°Π·Π΅ΡΠ½ΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ², ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠ°Ρ ΠΏΠΎΠ»ΡΡΠ°ΡΡ Π»Π°Π·Π΅ΡΠ½ΡΠ΅ ΠΈΠΌΠΏΡΠ»ΡΡΡ Ρ ΠΏΠΈΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΡΡ >1 ΠΠΡ ΠΈ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ ΠΎΠΊΠΎΠ»ΠΎ 330 ΡΡ ΠΏΡΠΈ ΡΠ°ΡΡΠΎΡΠ΅ ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ 1β10 ΠΊΠΡ. ΠΠ°Π½Π½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Π° Π΄Π»Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π² ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π²ΠΎΠ·Π±ΡΠΆΠ΄Π΅Π½ΠΈΡ-Π·ΠΎΠ½Π΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Ρ Π²ΡΡΠΎΠΊΠΈΠΌ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ, Π° ΡΠ°ΠΊΠΆΠ΅ Π΄ΡΡΠ³ΠΈΡ
ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡΡ
, ΡΡΠ΅Π±ΡΡΡΠΈΡ
Π²ΡΡΠΎΠΊΠΎΠΉ ΠΏΠΈΠΊΠΎΠ²ΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ ΠΈ ΡΠ°ΡΡΠΎΡΡ ΠΏΠΎΠ²ΡΠΎΡΠ΅Π½ΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ², Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ Π΄Π»Ρ Π½Π°ΠΊΠ°ΡΠΊΠΈ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π³Π΅Π½Π΅ΡΠ°ΡΠΎΡΠΎΠ² ΡΠ²Π΅ΡΠ° Ρ ΡΠ΅Π»ΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΌΡΠΎΡΠ΅ΠΊΡΠ½Π΄Π½ΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π² ΠΠΠΎΠ±Π»Π°ΡΡΠΈ ΡΠΏΠ΅ΠΊΡΡΠ°
High efficient 12W diode-pumped actively Q-switched YB:KGD(WO4)2 laser
Compact diode-pumped actively Q-switched Yb:KGW laser is demonstrated with optical-to-optical efficiency of 50%. In a Z-shaped laser cavity configuration output power of 12.2 W with repetition rate up to 50 kHz and pulse duration of 10-24 ns was obtained. The maximum pulse peak power of 70 kW was achieved. The laser output beam profile was Gaussian up to maximum pump powers with M2 factor lower than 1.2
High efficient 12W diode-pumped actively Q-switched YB:KGD(WO4)2 laser
Compact diode-pumped actively Q-switched Yb:KGW laser is demonstrated with optical-to-optical efficiency of 50%. In a Z-shaped laser cavity configuration output power of 12.2 W with repetition rate up to 50 kHz and pulse duration of 10-24 ns was obtained. The maximum pulse peak power of 70 kW was achieved. The laser output beam profile was Gaussian up to maximum pump powers with M2 factor lower than 1.2
DIODE PUMPED YB3+:KGD(WO4)2 REGENERATIVE AMPLIFICATION SYSTEM OF FEMTOSECOND LASER PULSES
The regenerative amplification system of femtosecond laser pulses, delivering a laser pulses with peak power more then 1 GW and duration <330 fs at repetition rates 1β10 kHz is presented. This system is applicable in pump-probe spectroscopy with high temporal resolution, as well as for pumping of optical parametric oscillators for generation of infrared femtosecond pulses
Yb:CALYO-based femtosecond chirped pulse regenerative amplifier for temporally resolved pump-probe spectroscopy
Diode-pumped femtosecond chirped pulse regenerative amplifiers based on Yb3+-materials are of practical importance for wide range of scientific, industrial and biomedical applications. The aim of this work was to study the amplification of broadband chirped femtosecond pulses in regenerative amplifier based on Yb3+:CaYAlO4 crystal.Such systems use femtosecond mode-locked lasers as seed pulse sources and amplify nJ-seed pulses to sub-mJ energy range. Most chirped pulse regenerative amplifier systems described in the literature use seed lasers with typical pulse spectral width at the level of 10β15 nm full width at half maximum (FWHM) that limit the seed pulse duration of about 90 fs and amplified pulse duration at the level of 200 fs due to strong influence of gain narrowing effect on the amplified pulse parameters. Yb3+-doped crystals with wide and smooth gain bandwidth as an active medium of chirped femtosecond pulse regenerative amplification systems allow to reduce negative contribution of gain narrowing effect and lead to shortening of amplified pulses. In this research we study the chirped pulse regenerative amplification of broad-band femtosecond pulses (60 nm spectral width FWHM) in the Yb3+:CaYAlO -based chirped pulse regenerative amplifier. Substantial reduction of the amplified pulse duration down to 120 fs (19.4 nm spectral width FWHM) with average power of 3 W at 200 kHz pulse repetition frequency was demonstrated without any gain narrowing compensation technique.The results of experimental investigation of broad-band seeded Yb3+:CaYAlO -based chirped pulse regenerative amplifier are reported for the first time to our knowledge. 120 fs-pulses (19.4 nm FWHM) with average output power of 3 W were demonstrated without any gain narrowing compensation technique. Despite the significant reduction of amplified pulse duration the task of improvement group velocity dispersion balance (including high orders of group velocity dispersion) remains relevant