55 research outputs found
The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades
We present a high-precision radial velocity (RV) survey of 719 FGKM stars,
which host 164 known exoplanets and 14 newly discovered or revised exoplanets
and substellar companions. This catalog updated the orbital parameters of known
exoplanets and long-period candidates, some of which have decades-longer
observational baselines than they did upon initial detection. The newly
discovered exoplanets range from warm sub-Neptunes and super-Earths to cold gas
giants. We present the catalog sample selection criteria, as well as over
100,000 radial velocity measurements, which come from the Keck-HIRES, APF-Levy,
and Lick-Hamilton spectrographs. We introduce the new RV search pipeline
RVSearch that we used to generate our planet catalog, and we make it available
to the public as an open-source Python package. This paper is the first study
in a planned series that will measure exoplanet occurrence rates and compare
exoplanet populations, including studies of giant planet occurrence beyond the
water ice line, and eccentricity distributions to explore giant planet
formation pathways. We have made public all radial velocities and associated
data that we use in this catalog.Comment: Accepted to ApJ
Overfitting Affects the Reliability of Radial Velocity Mass Estimates of the V1298 Tau Planets
Mass, radius, and age measurements of young (<100 Myr) planets have the power
to shape our understanding of planet formation. However, young stars tend to be
extremely variable in both photometry and radial velocity, which makes
constraining these properties challenging. The V1298 Tau system of four ~0.5
Rjup planets transiting a pre-main sequence star presents an important, if
stress-inducing, opportunity to directly observe and measure the properties of
infant planets. Su\'arez-Mascare\~no et al. (2021) published
radial-velocity-derived masses for two of the V1298 Tau planets using a
state-of-the-art Gaussian Process regression framework. The planetary densities
computed from these masses were surprisingly high, implying extremely rapid
contraction after formation in tension with most existing planet formation
theories. In an effort to further constrain the masses of the V1298 Tau
planets, we obtained 36 RVs using Keck/HIRES, and analyzed them in concert with
published RVs and photometry. Through performing a suite of cross validation
tests, we found evidence that the preferred model of SM21 suffers from
overfitting, defined as the inability to predict unseen data, rendering the
masses unreliable. We detail several potential causes of this overfitting, many
of which may be important for other RV analyses of other active stars, and
recommend that additional time and resources be allocated to understanding and
mitigating activity in active young stars such as V1298 Tau.Comment: 26 pages, 12 figures; published in A
Investigating the Atmospheric Mass Loss of the Kepler-105 Planets Straddling the Radius Gap
An intriguing pattern among exoplanets is the lack of detected planets
between approximately R and R. One proposed
explanation for this "radius gap" is the photoevaporation of planetary
atmospheres, a theory that can be tested by studying individual planetary
systems. Kepler-105 is an ideal system for such testing due to the ordering and
sizes of its planets. Kepler-105 is a sun-like star that hosts two planets
straddling the radius gap in a rare architecture with the larger planet closer
to the host star ( R, days, R, days). If photoevaporation sculpted the
atmospheres of these planets, then Kepler-105b would need to be much more
massive than Kepler-105c to retain its atmosphere, given its closer proximity
to the host star. To test this hypothesis, we simultaneously analyzed radial
velocities (RVs) and transit timing variations (TTVs) of the Kepler-105 system,
measuring disparate masses of M ( g cm) and M ( g cm). Based on these masses, the difference in gas
envelope content of the Kepler-105 planets could be entirely due to
photoevaporation (in 76\% of scenarios), although other mechanisms like
core-powered mass loss could have played a role for some planet albedos.Comment: 14 pages, 3 figures, 2 table
WASP-107b’s Density Is Even Lower: A Case Study for the Physics of Planetary Gas Envelope Accretion and Orbital Migration
With a mass in the Neptune regime and a radius of Jupiter, WASP-107b presents a challenge to planet formation theories. Meanwhile, the planet's low surface gravity and the star's brightness also make it one of the most favorable targets for atmospheric characterization. Here, we present the results of an extensive 4 yr Keck/HIRES radial-velocity (RV) follow-up program of the WASP-107 system and provide a detailed study of the physics governing the accretion of the gas envelope of WASP-107b. We reveal that WASP-107b's mass is only 1.8 Neptune masses (M_b = 30.5 ± 1.7 M_⊕). The resulting extraordinarily low density suggests that WASP-107b has a H/He envelope mass fraction of >85% unless it is substantially inflated. The corresponding core mass of <4.6 M_⊕ at 3σ is significantly lower than what is traditionally assumed to be necessary to trigger massive gas envelope accretion. We demonstrate that this large gas-to-core mass ratio most plausibly results from the onset of accretion at gsim1 au onto a low-opacity, dust-free atmosphere and subsequent migration to the present-day a_b = 0.0566 ± 0.0017 au. Beyond WASP-107b, we also detect a second, more massive planet (M_c sin i = 0.36 ± 0.04MJ ) on a wide eccentric orbit (e _c = 0.28 ± 0.07) that may have influenced the orbital migration and spin–orbit misalignment of WASP-107b. Overall, our new RV observations and envelope accretion modeling provide crucial insights into the intriguing nature of WASP-107b and the system's formation history. Looking ahead, WASP-107b will be a keystone planet to understand the physics of gas envelope accretion
The TESS-Keck Survey: Science Goals and Target Selection
Space-based transit missions such as Kepler and TESS have demonstrated that
planets are ubiquitous. However, the success of these missions heavily depends
on ground-based radial velocity (RV) surveys, which combined with transit
photometry can yield bulk densities and orbital properties. While most Kepler
host stars are too faint for detailed follow-up observations, TESS is detecting
planets orbiting nearby bright stars that are more amenable to RV
characterization. Here we introduce the TESS-Keck Survey (TKS), an RV program
using ~100 nights on Keck/HIRES to study exoplanets identified by TESS. The
primary survey aims are investigating the link between stellar properties and
the compositions of small planets; studying how the diversity of system
architectures depends on dynamical configurations or planet multiplicity;
identifying prime candidates for atmospheric studies with JWST; and
understanding the role of stellar evolution in shaping planetary systems. We
present a fully-automated target selection algorithm, which yielded 103 planets
in 86 systems for the final TKS sample. Most TKS hosts are inactive,
solar-like, main-sequence stars (4500 K < Teff < 6000 K) at a wide range of
metallicities. The selected TKS sample contains 71 small planets (Rp < 4 Re),
11 systems with multiple transiting candidates, 6 sub-day period planets and 3
planets that are in or near the habitable zone of their host star. The target
selection described here will facilitate the comparison of measured planet
masses, densities, and eccentricities to predictions from planet population
models. Our target selection software is publicly available (at
https://github.com/ashleychontos/sort-a-survey) and can be adapted for any
survey which requires a balance of multiple science interests within a given
telescope allocation.Comment: 23 pages, 10 figures, 5 table
Giant Outer Transiting Exoplanet Mass (GOT 'EM) Survey. IV. Long-term Doppler Spectroscopy for 11 Stars Thought to Host Cool Giant Exoplanets
Discovering and characterizing exoplanets at the outer edge of the transit
method's sensitivity has proven challenging owing to geometric biases and the
practical difficulties associated with acquiring long observational baselines.
Nonetheless, a sample of giant exoplanets on orbits longer than 100 days has
been identified by transit hunting missions. We present long-term Doppler
spectroscopy for 11 such systems with observation baselines spanning a few
years to a decade. We model these radial velocity observations jointly with
transit photometry to provide initial characterizations of these objects and
the systems in which they exist. Specifically, we make new precise mass
measurements for four long-period giant exoplanets (Kepler-111 c, Kepler-553 c,
Kepler-849 b, and PH-2 b), we place new upper limits on mass for four others
(Kepler-421 b, KOI-1431.01, Kepler-1513 b, and Kepler-952 b), and we show that
several "confirmed" planets are in fact not planetary at all. We present these
findings to complement similar efforts focused on closer-in short-period giant
planets, and with the hope of inspiring future dedicated studies of cool giant
exoplanets.Comment: 35 pages, 24 figures, 11 tables. Accepted for publication in ApJ
Supplemen
Physical Parameters of the Multiplanet Systems HD 106315 and GJ 9827
HD 106315 and GJ 9827 are two bright, nearby stars that host multiple super-Earths and sub-Neptunes discovered by K2 that are well suited for atmospheric characterization. We refined the planets' ephemerides through Spitzer transits, enabling accurate transit prediction required for future atmospheric characterization through transmission spectroscopy. Through a multiyear high-cadence observing campaign with Keck/High Resolution Echelle Spectrometer and Magellan/Planet Finder Spectrograph, we improved the planets' mass measurements in anticipation of Hubble Space Telescope transmission spectroscopy. For GJ 9827, we modeled activity-induced radial velocity signals with a Gaussian process informed by the Calcium II H&K lines in order to more accurately model the effect of stellar noise on our data. We measured planet masses of M_b = 4.87 ± 0.37 M_⊕, M_c = 1.92 ± 0.49 M_⊕, and M_d = 3.42 ± 0.62 M_⊕. For HD 106315, we found that such activity radial velocity decorrelation was not effective due to the reduced presence of spots and speculate that this may extend to other hot stars as well (T_(eff) > 6200 K). We measured planet masses of M_b = 10.5 ± 3.1 M_⊕ and M_c = 12.0 ± 3.8 M_⊕. We investigated all of the planets' compositions through comparison of their masses and radii to a range of interior models. GJ 9827 b and GJ 9827 c are both consistent with a 50/50 rock-iron composition, GJ 9827 d and HD 106315 b both require additional volatiles and are consistent with moderate amounts of water or hydrogen/helium, and HD 106315 c is consistent with a ~10% hydrogen/helium envelope surrounding an Earth-like rock and iron core
- …