55 research outputs found

    The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades

    Get PDF
    We present a high-precision radial velocity (RV) survey of 719 FGKM stars, which host 164 known exoplanets and 14 newly discovered or revised exoplanets and substellar companions. This catalog updated the orbital parameters of known exoplanets and long-period candidates, some of which have decades-longer observational baselines than they did upon initial detection. The newly discovered exoplanets range from warm sub-Neptunes and super-Earths to cold gas giants. We present the catalog sample selection criteria, as well as over 100,000 radial velocity measurements, which come from the Keck-HIRES, APF-Levy, and Lick-Hamilton spectrographs. We introduce the new RV search pipeline RVSearch that we used to generate our planet catalog, and we make it available to the public as an open-source Python package. This paper is the first study in a planned series that will measure exoplanet occurrence rates and compare exoplanet populations, including studies of giant planet occurrence beyond the water ice line, and eccentricity distributions to explore giant planet formation pathways. We have made public all radial velocities and associated data that we use in this catalog.Comment: Accepted to ApJ

    Overfitting Affects the Reliability of Radial Velocity Mass Estimates of the V1298 Tau Planets

    Full text link
    Mass, radius, and age measurements of young (<100 Myr) planets have the power to shape our understanding of planet formation. However, young stars tend to be extremely variable in both photometry and radial velocity, which makes constraining these properties challenging. The V1298 Tau system of four ~0.5 Rjup planets transiting a pre-main sequence star presents an important, if stress-inducing, opportunity to directly observe and measure the properties of infant planets. Su\'arez-Mascare\~no et al. (2021) published radial-velocity-derived masses for two of the V1298 Tau planets using a state-of-the-art Gaussian Process regression framework. The planetary densities computed from these masses were surprisingly high, implying extremely rapid contraction after formation in tension with most existing planet formation theories. In an effort to further constrain the masses of the V1298 Tau planets, we obtained 36 RVs using Keck/HIRES, and analyzed them in concert with published RVs and photometry. Through performing a suite of cross validation tests, we found evidence that the preferred model of SM21 suffers from overfitting, defined as the inability to predict unseen data, rendering the masses unreliable. We detail several potential causes of this overfitting, many of which may be important for other RV analyses of other active stars, and recommend that additional time and resources be allocated to understanding and mitigating activity in active young stars such as V1298 Tau.Comment: 26 pages, 12 figures; published in A

    Investigating the Atmospheric Mass Loss of the Kepler-105 Planets Straddling the Radius Gap

    Full text link
    An intriguing pattern among exoplanets is the lack of detected planets between approximately 1.51.5 R_\oplus and 2.02.0 R_\oplus. One proposed explanation for this "radius gap" is the photoevaporation of planetary atmospheres, a theory that can be tested by studying individual planetary systems. Kepler-105 is an ideal system for such testing due to the ordering and sizes of its planets. Kepler-105 is a sun-like star that hosts two planets straddling the radius gap in a rare architecture with the larger planet closer to the host star (Rb=2.53±0.07R_b = 2.53\pm0.07 R_\oplus, Pb=5.41P_b = 5.41 days, Rc=1.44±0.04R_c = 1.44\pm0.04 R_\oplus, Pc=7.13P_c = 7.13 days). If photoevaporation sculpted the atmospheres of these planets, then Kepler-105b would need to be much more massive than Kepler-105c to retain its atmosphere, given its closer proximity to the host star. To test this hypothesis, we simultaneously analyzed radial velocities (RVs) and transit timing variations (TTVs) of the Kepler-105 system, measuring disparate masses of Mb=10.8±2.3M_b = 10.8\pm2.3 M_\oplus (ρb=0.97±0.22 \rho_b = 0.97\pm0.22 g cm3^{-3}) and Mc=5.6±1.2M_c = 5.6\pm1.2 M_\oplus (ρc=2.64±0.61\rho_c = 2.64\pm0.61 g cm3^{-3}). Based on these masses, the difference in gas envelope content of the Kepler-105 planets could be entirely due to photoevaporation (in 76\% of scenarios), although other mechanisms like core-powered mass loss could have played a role for some planet albedos.Comment: 14 pages, 3 figures, 2 table

    WASP-107b’s Density Is Even Lower: A Case Study for the Physics of Planetary Gas Envelope Accretion and Orbital Migration

    Get PDF
    With a mass in the Neptune regime and a radius of Jupiter, WASP-107b presents a challenge to planet formation theories. Meanwhile, the planet's low surface gravity and the star's brightness also make it one of the most favorable targets for atmospheric characterization. Here, we present the results of an extensive 4 yr Keck/HIRES radial-velocity (RV) follow-up program of the WASP-107 system and provide a detailed study of the physics governing the accretion of the gas envelope of WASP-107b. We reveal that WASP-107b's mass is only 1.8 Neptune masses (M_b = 30.5 ± 1.7 M_⊕). The resulting extraordinarily low density suggests that WASP-107b has a H/He envelope mass fraction of >85% unless it is substantially inflated. The corresponding core mass of <4.6 M_⊕ at 3σ is significantly lower than what is traditionally assumed to be necessary to trigger massive gas envelope accretion. We demonstrate that this large gas-to-core mass ratio most plausibly results from the onset of accretion at gsim1 au onto a low-opacity, dust-free atmosphere and subsequent migration to the present-day a_b = 0.0566 ± 0.0017 au. Beyond WASP-107b, we also detect a second, more massive planet (M_c sin i = 0.36 ± 0.04MJ ) on a wide eccentric orbit (e _c = 0.28 ± 0.07) that may have influenced the orbital migration and spin–orbit misalignment of WASP-107b. Overall, our new RV observations and envelope accretion modeling provide crucial insights into the intriguing nature of WASP-107b and the system's formation history. Looking ahead, WASP-107b will be a keystone planet to understand the physics of gas envelope accretion

    The TESS-Keck Survey: Science Goals and Target Selection

    Full text link
    Space-based transit missions such as Kepler and TESS have demonstrated that planets are ubiquitous. However, the success of these missions heavily depends on ground-based radial velocity (RV) surveys, which combined with transit photometry can yield bulk densities and orbital properties. While most Kepler host stars are too faint for detailed follow-up observations, TESS is detecting planets orbiting nearby bright stars that are more amenable to RV characterization. Here we introduce the TESS-Keck Survey (TKS), an RV program using ~100 nights on Keck/HIRES to study exoplanets identified by TESS. The primary survey aims are investigating the link between stellar properties and the compositions of small planets; studying how the diversity of system architectures depends on dynamical configurations or planet multiplicity; identifying prime candidates for atmospheric studies with JWST; and understanding the role of stellar evolution in shaping planetary systems. We present a fully-automated target selection algorithm, which yielded 103 planets in 86 systems for the final TKS sample. Most TKS hosts are inactive, solar-like, main-sequence stars (4500 K < Teff < 6000 K) at a wide range of metallicities. The selected TKS sample contains 71 small planets (Rp < 4 Re), 11 systems with multiple transiting candidates, 6 sub-day period planets and 3 planets that are in or near the habitable zone of their host star. The target selection described here will facilitate the comparison of measured planet masses, densities, and eccentricities to predictions from planet population models. Our target selection software is publicly available (at https://github.com/ashleychontos/sort-a-survey) and can be adapted for any survey which requires a balance of multiple science interests within a given telescope allocation.Comment: 23 pages, 10 figures, 5 table

    Giant Outer Transiting Exoplanet Mass (GOT 'EM) Survey. IV. Long-term Doppler Spectroscopy for 11 Stars Thought to Host Cool Giant Exoplanets

    Full text link
    Discovering and characterizing exoplanets at the outer edge of the transit method's sensitivity has proven challenging owing to geometric biases and the practical difficulties associated with acquiring long observational baselines. Nonetheless, a sample of giant exoplanets on orbits longer than 100 days has been identified by transit hunting missions. We present long-term Doppler spectroscopy for 11 such systems with observation baselines spanning a few years to a decade. We model these radial velocity observations jointly with transit photometry to provide initial characterizations of these objects and the systems in which they exist. Specifically, we make new precise mass measurements for four long-period giant exoplanets (Kepler-111 c, Kepler-553 c, Kepler-849 b, and PH-2 b), we place new upper limits on mass for four others (Kepler-421 b, KOI-1431.01, Kepler-1513 b, and Kepler-952 b), and we show that several "confirmed" planets are in fact not planetary at all. We present these findings to complement similar efforts focused on closer-in short-period giant planets, and with the hope of inspiring future dedicated studies of cool giant exoplanets.Comment: 35 pages, 24 figures, 11 tables. Accepted for publication in ApJ Supplemen

    Physical Parameters of the Multiplanet Systems HD 106315 and GJ 9827

    Get PDF
    HD 106315 and GJ 9827 are two bright, nearby stars that host multiple super-Earths and sub-Neptunes discovered by K2 that are well suited for atmospheric characterization. We refined the planets' ephemerides through Spitzer transits, enabling accurate transit prediction required for future atmospheric characterization through transmission spectroscopy. Through a multiyear high-cadence observing campaign with Keck/High Resolution Echelle Spectrometer and Magellan/Planet Finder Spectrograph, we improved the planets' mass measurements in anticipation of Hubble Space Telescope transmission spectroscopy. For GJ 9827, we modeled activity-induced radial velocity signals with a Gaussian process informed by the Calcium II H&K lines in order to more accurately model the effect of stellar noise on our data. We measured planet masses of M_b = 4.87 ± 0.37 M_⊕, M_c = 1.92 ± 0.49 M_⊕, and M_d = 3.42 ± 0.62 M_⊕. For HD 106315, we found that such activity radial velocity decorrelation was not effective due to the reduced presence of spots and speculate that this may extend to other hot stars as well (T_(eff) > 6200 K). We measured planet masses of M_b = 10.5 ± 3.1 M_⊕ and M_c = 12.0 ± 3.8 M_⊕. We investigated all of the planets' compositions through comparison of their masses and radii to a range of interior models. GJ 9827 b and GJ 9827 c are both consistent with a 50/50 rock-iron composition, GJ 9827 d and HD 106315 b both require additional volatiles and are consistent with moderate amounts of water or hydrogen/helium, and HD 106315 c is consistent with a ~10% hydrogen/helium envelope surrounding an Earth-like rock and iron core
    corecore