583 research outputs found

    Modelling the microfiltration of lactic acid fermentation broths and comparison of operating modes

    Get PDF
    clarification of fermentation broths by cross-flow microfiltration. Microfiltration experiments conducted under constant transmembrane pressure and under constant permeate fluxes (higher and lower than the critical flux) were represented by the resistance in series model in which the membrane resistance, the adsorption resistance, the bacteria cake resistance and the soluble compounds concentration polarisation resistance were taken into account. The different operating modes were compared in terms of two industrial interest criteria: the productivity and fouling rates. Higher productivities were obtained during constant transmembrane pressure runs whereas the lowest fouling rate was observed during the run conducted with a constant permeate flux lower than the critical flux. However, this fouling was mainly due to adsorption and solute components concentration polarisation. Key words

    Influence of electrostatic interactions in electrophoretic membrane contactors

    Get PDF
    In electrophoretic separators, a porous membrane is used to put into contact two flowing liquids between which an electrically driven mass transfer takes place. As far as charged solutes are concerned, the mass transfer can be affected by electrostatic interactions taking place at the membrane solution interface. The influence of these interactions on the solvent and solute transfer is investigated by associating a theoretical and an experimental work, carried out with buffered solutions of different solutes, chosen with respect to their size or electrical charge. Experimental variations of the electroosmotic flux as well as those of the solute concentrations are used to get the values of the characteristic parameters involved in the model. Results obtained with binary solutions are then compared to those obtained with single-solute solutions so as to point out the mass transfer limitation

    Fluorescence spectroscopy applied to the optimisation of a desalting step by electrodialysis for the characterisation of marine organic matter

    Get PDF
    The isolation and characterisation of marine dissolved organic matter (DOM) are still not readily achieved today. The study of this chemically complex material is particularly difficult, especially as it is hindered by the high salinity of seawater. It is therefore essential to develop a method in which a sufficient quantity of marine organic matter can be collected for structural analyses. Reverse osmosis (RO) is often used for the concentration of DOM from freshwaters, due to the fact that DOM is not modified during RO and that DOC recoveries are high (about 80%). Unfortunately, RO cannot be used directly to isolate marine DOM,since both salts and organic matter are concentrated during the process. Therefore, marine samples have to be desalted before their concentration by RO. Our aim was to develop a desalting step of seawater by electrodialysis (ED), whilst minimising DOM modifications and losses. The process was first developed with small volumes (2 L) of artificial and Mediterranean seawater and was then applied to larger volumes.We showed that 20 L of Mediterranean seawater could be rapidly desalted (in less than 7 h) and, by monitoring the quality of DOM in desalted subsamples collected during ED using spectrofluorometry, that the quality of DOM was not significantly modified. It was concluded that desalted samples were still representative of the initial seawater samples. It should be noted, however, that care has to be taken in choosing the ratio of the volume of water to be desalted over the membrane surface area in order to limit DOM modifications and losses. Electrodialysis efficiently removed up to 75% of the salts present in the seawater samples whilst recovering most of unaltered DOM. ED and RO could then be combined in order to isolate, concentrate and characterise marine organic matter

    Investigation of nanofiltration as a purification step for lactic acid production processes based on conventional and bipolar electrodialysis operations

    Get PDF
    Nanofiltration was investigated for usability in a specific lactic acid production process based on conventional and bipolar electrodialysis operations. Industrial fluids, corresponding to two potential integration levels and coming from an existing installation, were investigated. The commercially available DK nanofiltration membrane was used and performances in terms of lactate/lactic acid recovery rate and purification efficiency are reported. Nanofiltration was able to efficiently remove magnesium and calcium ions from a sodium lactate fermentation broth before its concentration and conversion by electrodialysis (first potential integration level). Maximum impurities rejections and lactate recovery were obtained at maximum transmembrane pressures. Mg2+ and Ca2+ rejections were 64±7 and 72±7%, respectively and lactate recovery rate reached 25±2 molm−2 h−1 for P = 20 bar. Sulfate and phosphate ions were also partially removed from the broth (40% rejection). At the invert, chloride ions were negatively retained by the membrane and were consequently more concentrated in the permeate. Nanofiltration also led to a nearly total decolouration of the fermentation broth. On the other hand, sulfate and phosphate rejections obtained from the filtration of a converted broth containing the lactic acid under its neutral form (second potential integration level) were also satisfactory, i.e. 47±5 and 51±5%, respectively. High recovery rates were observed in that case, i.e. 48±2 molm−2 h−1 at 20 bar. It indicated that NF could also be used as final purification step in the process

    Water temperature modeling in the Garonne River (France)

    Get PDF
    Stream water temperature is one of the most important parameters for water quality and ecosystem studies. Temperature can influence many chemical and biological processes and therefore impacts on the living conditions and distribution of aquatic ecosystems. Simplified models such as statistical models can be very useful for practitioners and water resource management. The present study assessed two statistical models – an equilibrium-based model and stochastic autoregressive model with exogenous inputs – in modeling daily mean water temperatures in the Garonne River from 1988 to 2005. The equilibrium temperature-based model is an approach where net heat flux at the water surface is expressed as a simpler form than in traditional deterministic models. The stochastic autoregressive model with exogenous inputs consists of decomposing the water temperature time series into a seasonal component and a short-term component (residual component). The seasonal component was modeled by Fourier series and residuals by a second-order autoregressive process (Markov chain) with use of short-term air temperatures as exogenous input. The models were calibrated using data of the first half of the period 1988–2005 and validated on the second half. Calibration of the models was done using temperatures above 20 ◦C only to ensure better prediction of high temperatures that are currently at stake for the aquatic conditions of the Garonne River, and particularly for freshwater migrating fishes such as Atlantic Salmon (Salmo salar L.). The results obtained for both approaches indicated that both models performed well with an average root mean square error for observed temperatures above 20 ◦C that varied on an annual basis from 0.55 ◦C to 1.72 ◦C on validation, and good predictions of temporal occurrences and durations of three temperature threshold crossings linked to the conditions of migration and survival of Atlantic Salmon

    Data assimilation method for real-time flash flood forecasting using a physically based distributed model

    Get PDF
    The MARINE model (Roux et al, 2011) is a physically based distributed model dedicated to real time flash flood forecasting on small to medium catchments. The infiltration capacity is evaluated by the Green and Ampt equation and the surface runoff calculation is divided into two parts: the land surface flow and the flow in the drainage network both based on kinematic wave hypothesis. In order to take into account rainfall spatial-temporal variability as well as the various behaviours of soil types among the catchment, the model is spatially distributed, which can also help to understand the flood driving processes. The model integrates remote sensing data such as the land coverage map with spatial resolution adapted to hydrological scales. Minimal data requirements for the model are: the Digital Elevation Model describing catchment topography and the location and description of the drainage network. Moreover some parameters are not directly measurable and need to be calibrated. Most of the sources of uncertainties can be propagated thanks to variational method (Castaings et al, 2009) and finally help to determine time dependent uncertainty intervals. This study also investigates the methodology developed for real-time flash flood forecasting using the MARINE model and data assimilation techniques. According to prior sensitivity analyses and calibrations, parameters values were determined as constants or initial guess. Then a data assimilation method called the adjoint state method is used to update some of the most sensitive parameters to improve accuracy of discharges predictions. The forecast errors are evaluated as a function of lead time and discussed from an operational point of view. Multiple strategies in term of updatable parameters set, length of time window, parameters bounds and observation threshold used to trigger the assimilation method are discussed regarding accuracy, robustness and real-time feasibility

    Nanofiltration as a purification step in production process of organic acids: Selectivity improvement by addition of an inorganic salt

    Get PDF
    The aim of this study is to investigate to what extend the addition of an electrolyte (NaCl or Na2SO4) can improve the selectivity of the sodium lactate/glucose separation by nanofiltration. Experimental results were used to get the variation of the observed retentions versus the permeation flux and to evaluate the separation efficiency from the separation factor. In presence of NaCl, both glucose and lactate retentions slightly decrease and remain very close except at low permeation fluxes where the addition of NaCl has more effect on lactate retention than on glucose one. On the contrary, whilst the addition of Na2SO4 has no influence on glucose retention, a strong effect was pointed out on the lactate one, especially for high electrolyte concentrations for which negative retentions were obtained at low permeation fluxes. Then, the separation was much more improved by the addition of Na2SO4 compared to NaCl. A maximum separation factor of 1.9 was obtained with Na2SO4 at 0.25 M added to the glucose (0.1 M)/sodium lactate (0.1 M) solution whereas the separation was impossible without the addition of salt

    Characterization of process-oriented hydrologic model behavior with temporal sensitivity analysis for flash floods in Mediterranean catchments

    Get PDF
    This paper presents a detailed analysis of 10 flash flood events in the Mediterranean region using the distributed hydrological model MARINE. Characterizing catchment response during flash flood events may provide new and valuable insight into the dynamics involved for extreme catchment response and their dependency on physiographic properties and flood severity. The main objective of this study is to analyze flash-flood-dedicated hydrologic model sensitivity with a new approach in hydrology, allowing model outputs variance decomposition for temporal patterns of parameter sensitivity analysis. Such approaches enable ranking of uncertainty sources for nonlinear and nonmonotonic mappings with a low computational cost. Hydrologic model and sensitivity analysis are used as learning tools on a large flash flood dataset. With Nash performances above 0.73 on average for this extended set of 10 validation events, the five sensitive parameters of MARINE process-oriented distributed model are analyzed. This contribution shows that soil depth explains more than 80% of model output variance when most hydrographs are peaking. Moreover, the lateral subsurface transfer is responsible for 80% of model variance for some catchment-flood events’ hydrographs during slow-declining limbs. The unexplained variance of model output representing interactions between parameters reveals to be very low during modeled flood peaks and informs that model parsimonious parameterization is appropriate to tackle the problem of flash floods. Interactions observed after model initialization or rainfall intensity peaks incite to improve water partition representation between flow components and initialization itself. This paper gives a practical framework for application of this method to other models, landscapes and climatic conditions, potentially helping to improve processes understanding and representation
    corecore