7,409 research outputs found
Bosonization and density-matrix renormalization group studies of Fulde-Ferrell-Larkin-Ovchinnikov phase and irrational magnetization plateaus in coupled chains
We review the properties of two coupled fermionic chains, or ladders, under a
magnetic field parallel to the lattice plane. Results are computed by
complementary analytical (bosonization) and numerical (density-matrix
renormalization group) methods which allows a systematic comparison. Limiting
cases such as coupled bands and coupled chains regimes are discussed. We
particularly focus on the evolution of the superconducting correlations under
increasing field and on the presence of irrational magnetization plateaus. We
found the existence of large doping-dependent magnetization plateaus in the
weakly-interacting and strong-coupling limits and in the non-trivial case of
isotropic couplings. We report on the existence of extended
Fulde-Ferrell-Larkin-Ovchinnikov phases within the isotropic t-J and Hubbard
models, deduced from the evolution of different observables under magnetic
field. Emphasis is put on the variety of superconducting order parameters
present at high magnetic field. We have also computed the evolution of the
Luttinger exponent corresponding to the ungaped spin mode appearing at finite
magnetization. In the coupled chain regime, the possibility of having polarized
triplet pairing under high field is predicted by bosonization.Comment: 18 pages, 19 figure
Doped two-leg ladder with ring exchange
The effect of a ring exchange on doped two-leg ladders is investigated
combining exact diagonalization (ED) and density matrix renormalization group
(DMRG) computations. We focus on the nature and weights of the low energy
magnetic excitations and on superconducting pairing. The stability with respect
to this cyclic term of a remarkable resonant mode originating from a hole
pair-magnon bound state is examined. We also find that, near the zero-doping
critical point separating rung-singlet and dimerized phases, doping reopens a
spin gap.Comment: 5 pages, 7 figures, to appear in PR
The Wide-field High-resolution Infrared TElescope (WHITE)
The Wide-field High-resolution Infrared TElescope (WHITE) will be dedicated
in the first years of its life to carrying out a few (well focused in terms of
science objectives and time) legacy surveys.
WHITE would have an angular resolution of ~0.3'' homogeneous over ~0.7 sq.
deg. in the wavelength range 1 - 5 um, which means that we will very
efficiently use all the available observational time during night time and day
time. Moreover, the deepest observations will be performed by summing up
shorter individual frames. We will have a temporal information that can be used
to study variable objects.
The three key science objectives of WHITE are : 1) A complete survey of the
Magellanic Clouds to make a complete census of young stellar objects in the
clouds and in the bridge and to study their star formation history and the link
with the Milky Way. The interaction of the two clouds with our Galaxy might the
closest example of a minor merging event that could be the main driver of
galaxy evolution in the last 5 Gyrs. 2) The building of the first sample of
dusty supernovae at z<1.2 in the near infrared range (1-5 um) to constrain the
equation of state from these obscured objects, study the formation of dust in
galaxies and build the first high resolution sample of high redshift galaxies
observed in their optical frame 3) A very wide weak lensing survey over that
would allow to estimate the equation of state in a way that would favourably
compete with space projects.Comment: Invited talk to the 2nd ARENA Conference : "The Astrophysical Science
Cases at Dome C" Potsdam 17-21 September, 200
Light transport in cold atoms and thermal decoherence
By using the coherent backscattering interference effect, we investigate
experimentally and theoretically how coherent transport of light inside a cold
atomic vapour is affected by the residual motion of atomic scatterers. As the
temperature of the atomic cloud increases, the interference contrast
dramatically decreases emphazising the role of motion-induced decoherence for
resonant scatterers even in the sub-Doppler regime of temperature. We derive
analytical expressions for the corresponding coherence time.Comment: 4 pages - submitted to Physical Review Letter
A Study of Activated Processes in Soft Sphere Glass
On the basis of long simulations of a binary mixture of soft spheres just
below the glass transition, we make an exploratory study of the activated
processes that contribute to the dynamics. We concentrate on statistical
measures of the size of the activated processes.Comment: 17 pages, 9 postscript figures with epsf, uses harvmac.te
Diamagnetism of doped two-leg ladders and probing the nature of their commensurate phases
We study the magnetic orbital effect of a doped two-leg ladder in the
presence of a magnetic field component perpendicular to the ladder plane.
Combining both low-energy approach (bosonization) and numerical simulations
(density-matrix renormalization group) on the strong coupling limit (t-J
model), a rich phase diagram is established as a function of hole doping and
magnetic flux. Above a critical flux, the spin gap is destroyed and a Luttinger
liquid phase is stabilized. Above a second critical flux, a reentrance of the
spin gap at high magnetic flux is found. Interestingly, the phase transitions
are associated with a change of sign of the orbital susceptibility. Focusing on
the small magnetic field regime, the spin-gapped superconducting phase is
robust but immediately acquires algebraic transverse (i.e. along rungs) current
correlations which are commensurate with the 4k_F density correlations. In
addition, we have computed the zero-field orbital susceptibility for a large
range of doping and interactions ratio J/t : we found strong anomalies at low
J/t only in the vicinity of the commensurate fillings corresponding to delta =
1/4 and 1/2. Furthermore, the behavior of the orbital susceptibility reveals
that the nature of these insulating phases is different: while for delta = 1/4
a 4k_F charge density wave is confirmed, the delta = 1/2 phase is shown to be a
bond order wave.Comment: 15 pages, 17 figure
Nanoscale surface relaxation of a membrane stack
Recent measurements of the short-wavelength (~ 1--100 nm) fluctuations in
stacks of lipid membranes have revealed two distinct relaxations: a fast one
(decay rate of ~ 0.1 ns^{-1}), which fits the known baroclinic mode of bulk
lamellar phases, and a slower one (~ 1--10 \mu s^{-1}) of unknown origin. We
show that the latter is accounted for by an overdamped capillary mode,
depending on the surface tension of the stack and its anisotropic viscosity. We
thereby demonstrate how the dynamic surface tension of membrane stacks could be
extracted from such measurements.Comment: 4 page
Tolerance and Sensitivity in the Fuse Network
We show that depending on the disorder, a small noise added to the threshold
distribution of the fuse network may or may not completely change the
subsequent breakdown process. When the threshold distribution has a lower
cutoff at a finite value and a power law dependence towards large thresholds
with an exponent which is less than , the network is not sensitive
to the added noise, otherwise it is. The transition between sensitivity or not
appears to be second order, and is related to a localization-delocalization
transition earlier observed in such systems.Comment: 12 pages, 3 figures available upon request, plain Te
Force distribution in a scalar model for non-cohesive granular material
We study a scalar lattice model for inter-grain forces in static,
non-cohesive, granular materials, obtaining two primary results. (i) The
applied stress as a function of overall strain shows a power law dependence
with a nontrivial exponent, which moreover varies with system geometry. (ii)
Probability distributions for forces on individual grains appear Gaussian at
all stages of compression, showing no evidence of exponential tails. With
regard to both results, we identify correlations responsible for deviations
from previously suggested theories.Comment: 16 pages, 9 figures, Submitted to PR
Internal states of model isotropic granular packings. III. Elastic properties
In this third and final paper of a series, elastic properties of numerically
simulated isotropic packings of spherical beads assembled by different
procedures and subjected to a varying confining pressure P are investigated. In
addition P, which determines the stiffness of contacts by Hertz's law, elastic
moduli are chiefly sensitive to the coordination number, the possible values of
which are not necessarily correlated with the density. Comparisons of numerical
and experimental results for glass beads in the 10kPa-10MPa range reveal
similar differences between dry samples compacted by vibrations and lubricated
packings. The greater stiffness of the latter, in spite of their lower density,
can hence be attributed to a larger coordination number. Voigt and Reuss bounds
bracket bulk modulus B accurately, but simple estimation schemes fail for shear
modulus G, especially in poorly coordinated configurations under low P.
Tenuous, fragile networks respond differently to changes in load direction, as
compared to load intensity. The shear modulus, in poorly coordinated packings,
tends to vary proportionally to the degree of force indeterminacy per unit
volume. The elastic range extends to small strain intervals, in agreement with
experimental observations. The origins of nonelastic response are discussed. We
conclude that elastic moduli provide access to mechanically important
information about coordination numbers, which escape direct measurement
techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page
- …