5 research outputs found
Performance of a computable phenotype for identification of patients with diabetes within PCORnet: The Patient-Centered Clinical Research Network
Purpose: PCORnet, the National Patient-Centered Clinical Research Network, represents an innovative system for the conduct of observational and pragmatic studies. We describe the identification and validation of a retrospective cohort of patients with type 2 diabetes (T2DM) from four PCORnet sites. Methods: We adapted existing computable phenotypes (CP) for the identification of patients with T2DM and evaluated their performance across four PCORnet sites (2012-2016). Patients entered the cohort on the earliest date they met one of three CP categories: (CP1) coded T2DM diagnosis (ICD-9/ICD-10) and an antidiabetic prescription, (CP2) diagnosis and glycosylated hemoglobin (HbA1c) ≥6.5%, or (CP3) an antidiabetic prescription and HbA1c ≥6.5%. We required evidence of health care utilization in each of the 2 prior years for each patient, as we also developed an incident T2DM CP to identify the subset of patients without documentation of T2DM in the 365 days before t 0 . Among a systematic sample of patients, we calculated the positive predictive value (PPV) for the T2DM CP and incident-T2DM CP using electronic health record (EHR) review as reference. Results: The CP identified 50 657 patients with T2DM. The PPV of patients randomly selected for validation was 96.2% (n = 1572; CI:95.1-97.0) and was consistently high across sites. The PPV for the incident-T2DM CP was 5.8% (CI:4.5-7.5). Conclusions: The T2DM CP accurately and efficiently identified patients with T2DM across multiple sites that participate in PCORnet, although the incident T2DM CP requires further study. PCORnet is a valuable data source for future epidemiological and comparative effectiveness research among patients with T2DM
Diabetes medication regimens and patient clinical characteristics in the national patient-centered clinical research network, PCORnet
We used electronic medical record (EMR) data in the National Patient-Centered Clinical Research Network (PCORnet) to characterize “real-world” prescription patterns of Type 2 diabetes (T2D) medications. We identified a retrospective cohort of 613,203 adult patients with T2D from 33 datamarts (median patient number: 12,711) from 2012 through 2017 using a validated computable phenotype. We characterized outpatient T2D prescriptions for each patient in the 90 days before and after cohort entry, as well as demographics, comorbidities, non-T2D prescriptions, and clinical and laboratory variables in the 730 days prior to cohort entry. Approximately half of the individuals in the cohort were females and 20% Black. Hypertension (60.3%) and hyperlipidemia (50.5%) were highly prevalent. Most patients were prescribed either a single T2D drug class (42.2%) or had no evidence of a T2D prescription in the EMR (42.4%). A smaller percentage was prescribed multiple T2D drug types (15.4%). Among patients prescribed a single T2D drug type, metformin was the most common (42.6%), followed by insulin (18.2%) and sulfonylureas (13.9%). Newer classes represented approximately 13% of single T2D drug type prescriptions (dipeptidyl peptidase-4 inhibitors [6.6%], glucagon-like peptide-1 receptor agonists [2.5%], thiazolidinediones [2.0%], and sodium-glucose cotransporter-2 inhibitors [1.6%]). Among patients prescribed multiple T2D drug types, the most common combination was metformin and sulfonylureas (63.5%). Metformin-based regimens were highly prevalent in PCORnet's T2D population, whereas newer agents were prescribed less frequently. PCORnet is a novel source for the potential conduct of observational studies among patients with T2D