42 research outputs found
Real-time data acquisition and processing system for MHz repetition rate image sensors
An electro-optic detector is one of the diagnostic setups used in particle accelerators. It employs an electro-optic crystal to encode the longitudinal beam charge profile in the spectrum of a light pulse. The charge distribution is then reconstructed using data captured by a fast spectrometer. The measurement repetition rate should match or exceed the machine bunching frequency, which is often in the range of several MHz. A high-speed optical line detector (HOLD) is a linear camera designed for easy integration with scientific experiments. The use of modern FPGA circuits helps in the efficient collection and processing of data. The solution is based on Xilinx 7-Series FPGA circuits and implements a custom latency-optimized architecture utilizing the AXI4 family of interfaces. HOLD is one of the fastest line cameras in the world. Thanks to its hardware architecture and a powerful KALYPSO sensor from KIT, it outperforms the fastest comparable commercial devices
Entanglement swapping with photons generated on-demand by a quantum dot
Photonic entanglement swapping, the procedure of entangling photons without
any direct interaction, is a fundamental test of quantum mechanics and an
essential resource to the realization of quantum networks. Probabilistic
sources of non-classical light can be used for entanglement swapping, but
quantum communication technologies with device-independent functionalities
demand for push-button operation that, in principle, can be implemented using
single quantum emitters. This, however, turned out to be an extraordinary
challenge due to the stringent requirements on the efficiency and purity of
generation of entangled states. Here we tackle this challenge and show that
pairs of polarization-entangled photons generated on-demand by a GaAs quantum
dot can be used to successfully demonstrate all-photonic entanglement swapping.
Moreover, we develop a theoretical model that provides quantitative insight on
the critical figures of merit for the performance of the swapping procedure.
This work shows that solid-state quantum emitters are mature for quantum
networking and indicates a path for scaling up.Comment: The first four authors contributed equally to this work. 17 pages, 3
figure
Experimental Multi-state Quantum Discrimination in the Frequency Domain with Quantum Dot Light
The quest for the realization of effective quantum state discrimination
strategies is of great interest for quantum information technology, as well as
for fundamental studies. Therefore, it is crucial to develop new and more
efficient methods to implement discrimination protocols for quantum states.
Among the others, single photon implementations are more advisable, because of
their inherent security advantage in quantum communication scenarios. In this
work, we present the experimental realization of a protocol employing a
time-multiplexing strategy to optimally discriminate among eight non-orthogonal
states, encoded in the four-dimensional Hilbert space spanning both the
polarization degree of freedom and photon energy. The experiment, built on a
custom-designed bulk optics analyser setup and single photons generated by a
nearly deterministic solid-state source, represents a benchmarking example of
minimum error discrimination with actual quantum states, requiring only linear
optics and two photodetectors to be realized. Our work paves the way for more
complex applications and delivers a novel approach towards high-dimensional
quantum encoding and decoding operations
Strain-induced dynamic control over the population of quantum emitters in two-dimensional materials
The discovery of quantum emitters in two-dimensional materials has triggered
a surge of research to assess their suitability for quantum photonics. While
their microscopic origin is still the subject of intense studies, ordered
arrays of quantum emitters are routinely fabricated using static
strain-gradients, which are used to drive excitons toward localized regions of
the 2D crystals where quantum-light-emission takes place. However, the
possibility of using strain in a dynamic fashion to control the appearance of
individual quantum emitters has never been explored so far. In this work, we
tackle this challenge by introducing a novel hybrid semiconductor-piezoelectric
device in which WSe2 monolayers are integrated onto piezoelectric pillars
delivering both static and dynamic strains. Static strains are first used to
induce the formation of quantum emitters, whose emission shows photon
anti-bunching. Their excitonic population and emission energy are then
reversibly controlled via the application of a voltage to the piezoelectric
pillar. Numerical simulations combined with drift-diffusion equations show that
these effects are due to a strain-induced modification of the
confining-potential landscape, which in turn leads to a net redistribution of
excitons among the different quantum emitters. Our work provides relevant
insights into the role of strain in the formation of quantum emitters in 2D
materials and suggests a method to switch them on and off on demand.Comment: 13 pages, 4 figure
Post-fabrication tuning of circular Bragg resonators for enhanced emitter-cavity coupling
Solid-state quantum emitters embedded in circular Bragg resonators are
attractive due to their ability to emit quantum states of light with high
brightness and low multi-photon probability. As for any emitter-microcavity
system, fabrication imperfections limit the spatial and spectral overlap of the
emitter with the cavity mode, thus limiting their coupling strength. Here, we
show that an initial spectral mismatch can be corrected after device
fabrication by repeated wet chemical etching steps. We demonstrate ~16 nm
wavelength tuning for optical modes in AlGaAs resonators on oxide, leading to a
4-fold Purcell enhancement of the emission of single embedded GaAs quantum
dots. Numerical calculations reproduce the observations and suggest that the
achievable performance of the resonator is only marginally affected in the
explored tuning range. We expect the method to be applicable also to circular
Bragg resonators based on other material platforms, thus increasing the device
yield of cavity-enhanced solid-state quantum emitters
A multipair-free source of entangled photons in the solid state
Unwanted multiphoton emission commonly reduces the degree of entanglement of
photons generated by non-classical light sources and, in turn, hampers their
exploitation in quantum information science and technology. Quantum emitters
have the potential to overcome this hurdle but, so far, the effect of
multiphoton emission on the quality of entanglement has never been addressed in
detail. Here, we tackle this challenge using photon pairs from a
resonantly-driven quantum dot and comparing quantum state tomography and
second-order coherence measurements as a function of the excitation power. We
observe that the relative (absolute) multiphoton emission probability is as low
as () at the maximum
source brightness, values that lead to a negligible effect on the degree of
entanglement. In stark contrast with probabilistic sources of entangled
photons, we also demonstrate that the multiphoton emission probability and the
degree of entanglement remain practically unchanged against the excitation
power for multiple Rabi cycles, despite we clearly observe oscillations in the
second-order coherence measurements. Our results, explained by a theoretical
model that we develop to estimate the actual multiphoton contribution in the
two-photon density matrix, highlight that quantum dots can be regarded as a
multipair-free source of entangled photons in the solid state
A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot
A quantum-light source that delivers photons with a high brightness and a
high degree of entanglement is fundamental for the development of efficient
entanglement-based quantum-key distribution systems. Among all possible
candidates, epitaxial quantum dots are currently emerging as one of the
brightest sources of highly entangled photons. However, the optimization of
both brightness and entanglement currently requires different technologies that
are difficult to combine in a scalable manner. In this work, we overcome this
challenge by developing a novel device consisting of a quantum dot embedded in
a circular Bragg resonator, in turn, integrated onto a micromachined
piezoelectric actuator. The resonator engineers the light-matter interaction to
empower extraction efficiencies up to 0.69(4). Simultaneously, the actuator
manipulates strain fields that tune the quantum dot for the generation of
entangled photons with fidelities up to 0.96(1). This hybrid technology has the
potential to overcome the limitations of the key rates that plague current
approaches to entanglement-based quantum key distribution and
entanglement-based quantum networks. Introductio
Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology
A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons
2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.
Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S