10,121 research outputs found
Mining Frequent Neighborhood Patterns in Large Labeled Graphs
Over the years, frequent subgraphs have been an important sort of targeted
patterns in the pattern mining literatures, where most works deal with
databases holding a number of graph transactions, e.g., chemical structures of
compounds. These methods rely heavily on the downward-closure property (DCP) of
the support measure to ensure an efficient pruning of the candidate patterns.
When switching to the emerging scenario of single-graph databases such as
Google Knowledge Graph and Facebook social graph, the traditional support
measure turns out to be trivial (either 0 or 1). However, to the best of our
knowledge, all attempts to redefine a single-graph support resulted in measures
that either lose DCP, or are no longer semantically intuitive.
This paper targets mining patterns in the single-graph setting. We resolve
the "DCP-intuitiveness" dilemma by shifting the mining target from frequent
subgraphs to frequent neighborhoods. A neighborhood is a specific topological
pattern where a vertex is embedded, and the pattern is frequent if it is shared
by a large portion (above a given threshold) of vertices. We show that the new
patterns not only maintain DCP, but also have equally significant semantics as
subgraph patterns. Experiments on real-life datasets display the feasibility of
our algorithms on relatively large graphs, as well as the capability of mining
interesting knowledge that is not discovered in prior works.Comment: 9 page
Edge mode based graphene nanomechanical resonators for high-sensitivity mass sensor
We perform both molecular dynamics simulations and theoretical analysis to
study the sensitivity of the graphene nanomechanical resonator based mass
sensors, which are actuated following the global extended mode or the localized
edge mode. We find that the mass detection sensitivity corresponding to the
edge mode is about three times higher than that corresponding to the extended
mode. Our analytic derivations reveal that the enhancement of the sensitivity
originates in the reduction of the effective mass for the edge mode due to its
localizing feature
- …