4 research outputs found

    Better Operating Room Ventilation as Determined by a Novel Ventilation Index is Associated with Lower Rates of Surgical Site Infections.

    Get PDF
    OBJECTIVE To assess the impact of operating room (OR) ventilation quality on surgical site infections (SSI) using a novel ventilation index. SUMMARY BACKGROUND DATA Previous studies compared laminar air flow with conventional ventilation, thereby ignoring many parameters that influence air flow properties. METHODS In this cohort study, we surveyed hospitals participating in the Swiss SSI surveillance and calculated a ventilation index for their ORs, with higher values reflecting less turbulent air displacement. For procedures captured between 01/2017-12/2019, we studied the association between ventilation index and SSI rates using linear regression (hospital-level analysis) and with the individual SSI risk using generalized linear mixed-effects models (patient-level analysis). RESULTS We included 47 hospitals (182 ORs). Among the 163'740 included procedures, 6791 SSIs were identified. In hospital-level analyses, a 5-unit increase in the ventilation index was associated with lower SSI rates for knee and hip arthroplasty (-0.41 infections per 100 procedures, CI -0.69 to -0.13), cardiac (-0.89, -1.91 to 0.12), and spine surgeries (-1.15, -2.56 to 0.26). Similarly, patient-level analyses showed a lower SSI risk with each 5-unit increase in ventilation index (adjusted odds ratio 0.71, CI 0.58 to 0.87 for knee and hip; 0.72, 0.49 to 1.06 for spine; 0.82, 0.69 to 0.98 for cardiac surgery). Higher index values were mainly associated with a lower risk for superficial and deep incisional SSIs. CONCLUSIONS Better ventilation properties, assessed with our ventilation index, are associated with lower rates of superficial and deep incisional SSIs in orthopedic and cardiac procedures. OR ventilation quality appeared to be less relevant for other surgery types

    Better operating room ventilation as determined by a novel ventilation index is associated with lower rates of surgical site infections

    Get PDF
    OBJECTIVE: The aim was to assess the impact of operating room (OR) ventilation quality on surgical site infections (SSIs) using a novel ventilation index. BACKGROUND: Previous studies compared laminar air flow with conventional ventilation, thereby ignoring many parameters that influence air flow properties. METHODS: In this cohort study, we surveyed hospitals participating in the Swiss SSI surveillance and calculated a ventilation index for their ORs, with higher values reflecting less turbulent air displacement. For procedures captured between January 2017 and December 2019, we studied the association between ventilation index and SSI rates using linear regression (hospital-level analysis) and with the individual SSI risk using generalized linear mixed-effects models (patient-level analysis). RESULTS: We included 47 hospitals (182 ORs). Among the 163,740 included procedures, 6791 SSIs were identified. In hospital-level analyses, a 5-unit increase in the ventilation index was associated with lower SSI rates for knee and hip arthroplasty (-0.41 infections per 100 procedures, 95% confidence interval: -0.69 to -0.13), cardiac (-0.89, -1.91 to 0.12), and spine surgeries (-1.15, -2.56 to 0.26). Similarly, patient-level analyses showed a lower SSI risk with each 5-unit increase in ventilation index (adjusted odds ratio 0.71, confidence interval: 0.58-0.87 for knee and hip; 0.72, 0.49-1.06 for spine; 0.82, 0.69-0.98 for cardiac surgery). Higher index values were mainly associated with a lower risk for superficial and deep incisional SSIs. CONCLUSIONS: Better ventilation properties, assessed with our ventilation index, are associated with lower rates of superficial and deep incisional SSIs in orthopedic and cardiac procedures. OR ventilation quality appeared to be less relevant for other surgery types
    corecore