196 research outputs found

    Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1

    Get PDF
    A defining feature of mitochondria is their maternal mode of inheritance. However, little is understood about the cellular mechanism through which paternal mitochondria, delivered from sperm, are eliminated from early mammalian embryos. Autophagy has been implicated in nematodes, but whether this mechanism is conserved in mammals has been disputed. Here, we show that cultured mouse fibroblasts and pre-implantation embryos use a common pathway for elimination of mitochondria. Both situations utilize mitophagy, in which mitochondria are sequestered by autophagosomes and delivered to lysosomes for degradation. The E3 ubiquitin ligases PARKIN and MUL1 play redundant roles in elimination of paternal mitochondria. The process is associated with depolarization of paternal mitochondria and additionally requires the mitochondrial outer membrane protein FIS1, the autophagy adaptor P62, and PINK1 kinase. Our results indicate that strict maternal transmission of mitochondria relies on mitophagy and uncover a collaboration between MUL1 and PARKIN in this process

    A Core Mitophagic Machinery Promotes Selective Degradation of Paternal Mitochondria in Mouse Embryos and MEF Cells

    Get PDF
    The maternal mode of mitochondrial inheritance is conserved across mammalian species; however, little is known about how mitochondria from the sperm are eliminated from early mammalian embryos. Mitophagy, the regulated degradation of mitochondria in the lysosome, has been proposed as a possible mechanism. Mitophagy is an important means by which the cell responds to changes in mitochondrial fitness, and has been observed under a number of physiological and non-physiological circumstances, including, but not limited to, hypoxia, mitochondrial depolarization, mitochondrial fission, and erythrocyte differentiation. Here we examine the core component of mitophagy proteins involved in three physiological states: respiration-induced mitophagy in cultured mouse fibroblasts, mitophagy of dysfunctional mitochondria in the absence of mitochondrial fusion, and degradation of paternal mitochondria in pre-implantation mouse embryos. We find that a common pathway is used for elimination of mitochondria, involving mitochondrial depolarization, and the E3 ubiquitin ligases PARKIN and MUL1. We find that PARKIN and MUL1 play partially redundant roles in elimination of paternal mitochondria that is also dependent on PINK1 kinase, the fission factor, FIS1, and the autophagy receptor, p62. We find that p62 is specifically recruited to defective mitochondria in fusion deficient cells by a mechanism independent of ubiquitin binding. Our results elucidate the molecular mechanism of strict maternal transmission of mitochondria and uncover a collaboration between MUL1 and PARKIN in mitophagy.</p

    Mitochondrial fission factor (Mff) is required for organization of the mitochondrial sheath in spermatids

    Get PDF
    Background: Mitochondrial fission counterbalances fusion to maintain organelle morphology, but its role during development remains poorly characterized. Mammalian spermatogenesis is a complex developmental process involving several drastic changes to mitochondrial shape and organization. Mitochondria are generally small and spherical in spermatogonia, elongate during meiosis, and fragment in haploid round spermatids. Near the end of spermatid maturation, small mitochondrial spheres line the axoneme, elongate, and tightly wrap around the midpiece to form the mitochondrial sheath, which is critical for fueling flagellar movements. It remains unclear how these changes in mitochondrial morphology are regulated and how they affect sperm development. Methods: We used genetic ablation of Mff (mitochondrial fission factor) in mice to investigate the role of mitochondrial fission during mammalian spermatogenesis. Results: Our analysis indicates that Mff is required for mitochondrial fragmentation in haploid round spermatids and for organizing mitochondria in the midpiece in elongating spermatids. In Mff mutant mice, round spermatids have aberrantly elongated mitochondria that often show central constrictions, suggestive of failed fission events. In elongating spermatids and spermatozoa, mitochondrial sheaths are disjointed, containing swollen mitochondria with large gaps between organelles. These mitochondrial abnormalities in Mff mutant sperm are associated with reduced respiratory chain Complex IV activity, aberrant sperm morphology and motility, and reduced fertility. Conclusions: Mff is required for organization of the mitochondrial sheath in mouse sperm. General Significance: Mitochondrial fission plays an important role in regulating mitochondrial organization during a complex developmental process

    Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1

    Get PDF
    A defining feature of mitochondria is their maternal mode of inheritance. However, little is understood about the cellular mechanism through which paternal mitochondria, delivered from sperm, are eliminated from early mammalian embryos. Autophagy has been implicated in nematodes, but whether this mechanism is conserved in mammals has been disputed. Here, we show that cultured mouse fibroblasts and pre-implantation embryos use a common pathway for elimination of mitochondria. Both situations utilize mitophagy, in which mitochondria are sequestered by autophagosomes and delivered to lysosomes for degradation. The E3 ubiquitin ligases PARKIN and MUL1 play redundant roles in elimination of paternal mitochondria. The process is associated with depolarization of paternal mitochondria and additionally requires the mitochondrial outer membrane protein FIS1, the autophagy adaptor P62, and PINK1 kinase. Our results indicate that strict maternal transmission of mitochondria relies on mitophagy and uncover a collaboration between MUL1 and PARKIN in this process

    Mitochondrial fusion is required for spermatogonial differentiation and meiosis

    Get PDF
    Differentiating cells tailor their metabolism to fulfill their specialized functions. We examined whether mitochondrial fusion is important for metabolic tailoring during spermatogenesis. Acutely after depletion of mitofusins Mfn1 and Mfn2, spermatogenesis arrests due to failure to accomplish a metabolic shift during meiosis. This metabolic shift includes increased mitochondrial content, mitochondrial elongation, and upregulation of oxidative phosphorylation (OXPHOS). With long-term mitofusin loss, all differentiating germ cell types are depleted, but proliferation of stem-like undifferentiated spermatogonia remains unaffected. Thus, compared with undifferentiated spermatogonia, differentiating spermatogonia and meiotic spermatocytes have cell physiologies that require high levels of mitochondrial fusion. Proteomics in fibroblasts reveals that mitofusin-null cells downregulate respiratory chain complexes and mitochondrial ribosomal subunits. Similarly, mitofusin depletion in immortalized spermatocytes or germ cells in vivo results in reduced OXPHOS subunits and activity. We reveal that by promoting OXPHOS, mitofusins enable spermatogonial differentiation and a metabolic shift during meiosis

    LymphoML: An interpretable artificial intelligence-based method identifies morphologic features that correlate with lymphoma subtype

    Full text link
    The accurate classification of lymphoma subtypes using hematoxylin and eosin (H&E)-stained tissue is complicated by the wide range of morphological features these cancers can exhibit. We present LymphoML - an interpretable machine learning method that identifies morphologic features that correlate with lymphoma subtypes. Our method applies steps to process H&E-stained tissue microarray cores, segment nuclei and cells, compute features encompassing morphology, texture, and architecture, and train gradient-boosted models to make diagnostic predictions. LymphoML's interpretable models, developed on a limited volume of H&E-stained tissue, achieve non-inferior diagnostic accuracy to pathologists using whole-slide images and outperform black box deep-learning on a dataset of 670 cases from Guatemala spanning 8 lymphoma subtypes. Using SHapley Additive exPlanation (SHAP) analysis, we assess the impact of each feature on model prediction and find that nuclear shape features are most discriminative for DLBCL (F1-score: 78.7%) and classical Hodgkin lymphoma (F1-score: 74.5%). Finally, we provide the first demonstration that a model combining features from H&E-stained tissue with features from a standardized panel of 6 immunostains results in a similar diagnostic accuracy (85.3%) to a 46-stain panel (86.1%).Comment: To be published in Proceedings of the 3rd Machine Learning for Health symposium, Proceedings of Machine Learning Research (PMLR

    Analytic results for Gaussian wave packets in four model systems: I. Visualization of the kinetic energy

    Full text link
    Using Gaussian wave packet solutions, we examine how the kinetic energy is distributed in time-dependent solutions of the Schrodinger equation corresponding to the cases of a free particle, a particle undergoing uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to an unstable equilibrium. We find, for specific choices of initial parameters, that as much as 90% of the kinetic energy can be localized (at least conceptually) in the `front half' of such Gaussian wave packets, and we visualize these effects.Comment: 22 pages, RevTeX, four .eps figures, to appear in Found. Phys. Lett. Vol. 17, Dec. 200

    Mitochondrial fusion is required for spermatogonial differentiation and meiosis

    Get PDF
    Differentiating cells tailor their metabolism to fulfill their specialized functions. We examined whether mitochondrial fusion is important for metabolic tailoring during spermatogenesis. Acutely after depletion of mitofusins Mfn1 and Mfn2, spermatogenesis arrests due to failure to accomplish a metabolic shift during meiosis. This metabolic shift includes increased mitochondrial content, mitochondrial elongation, and upregulation of oxidative phosphorylation (OXPHOS). With long-term mitofusin loss, all differentiating germ cell types are depleted, but proliferation of stem-like undifferentiated spermatogonia remains unaffected. Thus, compared with undifferentiated spermatogonia, differentiating spermatogonia and meiotic spermatocytes have cell physiologies that require high levels of mitochondrial fusion. Proteomics in fibroblasts reveals that mitofusin-null cells downregulate respiratory chain complexes and mitochondrial ribosomal subunits. Similarly, mitofusin depletion in immortalized spermatocytes or germ cells in vivo results in reduced OXPHOS subunits and activity. We reveal that by promoting OXPHOS, mitofusins enable spermatogonial differentiation and a metabolic shift during meiosis
    • …
    corecore