850 research outputs found

    ANANAS - A Framework For Analyzing Android Applications

    Full text link
    Android is an open software platform for mobile devices with a large market share in the smartphone sector. The openness of the system as well as its wide adoption lead to an increasing amount of malware developed for this platform. ANANAS is an expandable and modular framework for analyzing Android applications. It takes care of common needs for dynamic malware analysis and provides an interface for the development of plugins. Adaptability and expandability have been main design goals during the development process. An abstraction layer for simple user interaction and phone event simulation is also part of the framework. It allows an analyst to script the required user simulation or phone events on demand or adjust the simulation to his needs. Six plugins have been developed for ANANAS. They represent well known techniques for malware analysis, such as system call hooking and network traffic analysis. The focus clearly lies on dynamic analysis, as five of the six plugins are dynamic analysis methods.Comment: Paper accepted at First Int. Workshop on Emerging Cyberthreats and Countermeasures ECTCM 201

    Sound, Complete, Linear-Space, Best-First Diagnosis Search

    Full text link
    Various model-based diagnosis scenarios require the computation of the most preferred fault explanations. Existing algorithms that are sound (i.e., output only actual fault explanations) and complete (i.e., can return all explanations), however, require exponential space to achieve this task. As a remedy, to enable successful diagnosis on memory-restricted devices and for memory-intensive problem cases, we propose RBF-HS, a diagnostic search method based on Korf's well-known RBFS algorithm. RBF-HS can enumerate an arbitrary fixed number of fault explanations in best-first order within linear space bounds, without sacrificing the desirable soundness or completeness properties. Evaluations using real-world diagnosis cases show that RBF-HS, when used to compute minimum-cardinality fault explanations, in most cases saves substantial space (up to 98 %) while requiring only reasonably more or even less time than Reiter's HS-Tree, a commonly used and as generally applicable sound, complete and best-first diagnosis search
    • …
    corecore