33 research outputs found
Using MapMyFitness to place physical activity into neighborhood context
It is difficult to obtain detailed information on the context of physical activity at large geographic scales, such as the entire United States, as well as over long periods of time, such as over years. MapMyFitness is a suite of interactive tools for individuals to track theirworkouts online or using global positioning system in their phones or other wireless trackers. This method article discusses the use of physical activity data tracked using MapMyFitness to examine patterns over space and time. An overview of MapMyFitness, including data tracked, user information, and geographic scope, is explored. We illustrate the utility of MapMyFitness data using tracked physical activity by users in Winston-Salem, NC, USA between 2006 and 2013. Types of physical activities tracked are described, as well as the percent of activities occurring in parks. Strengths of MapMyFitness data include objective data collection, low participant burden, extensive geographic scale, and longitudinal series. Limitations include generalizability, behavioral change as the result of technology use, and potential ethical considerations. MapMyFitness is a powerful tool to investigate patterns of physical activity across large geographic and temporal scales
Prediagnosis social support, social integration, living status, and colorectal cancer mortality in postmenopausal women from the women's health initiative
Background: We evaluated associations between perceived social support, social integration, living alone, and colorectal cancer (CRC) outcomes in postmenopausal women. Methods: The study included 1431 women from the Women's Health Initiative who were diagnosed from 1993 through 2017 with stage I through IV CRC and who responded to the Medical Outcomes Study Social Support survey before their CRC diagnosis. We used proportional hazards regression to evaluate associations of social support (tertiles) and types of support, assessed up to 6 years before diagnosis, with overall and CRC-specific mortality. We also assessed associations of social integration and living alone with outcomes also in a subset of 1141 women who had information available on social ties (marital/partner status, community and religious participation) and living situation. Results: In multivariable analyses, women with low (hazard ratio [HR], 1.52; 95% CI, 1.23-1.88) and moderate (HR, 1.21; 95% CI, 0.98-1.50) perceived social support had significantly higher overall mortality than those with high support (P [continuous] <.001). Similarly, women with low (HR, 1.42; 95% CI, 1.07-1.88) and moderate (HR, 1.28; 95% CI, 0.96-1.70) perceived social support had higher CRC mortality than those with high social support (P [continuous] =.007). Emotional, informational, and tangible support and positive interaction were all significantly associated with outcomes, whereas affection was not. In main-effects analyses, the level of social integration was related to overall mortality (P for trend =.02), but not CRC mortality (P for trend =.25), and living alone was not associated with mortality outcomes. However, both the level of social integration and living alone were related to outcomes in patients with rectal cancer. Conclusions: Women with low perceived social support before diagnosis have higher overall and CRC-specific mortality
First measurement of the circular beam asymmetry in the gamma p --> pi0 eta p reaction
The circular photon asymmetry for pi0 eta photoproduction on the proton was
measured for the first time at the tagged photon facility of the MAMI C
accelerator using the Crystal Ball/TAPS photon spectrometer. The experimental
results are interpreted within a phenomenological isobar model that confirms
the dominant role of the Delta(1700)D33 resonance. The measured asymmetry
allows us to identify small contributions from positive-parity resonances via
interference terms with the dominant D33 amplitude.Comment: 11 pages, 3 figures, submitted to Phys.Lett.
ARFIMA-GARCH modeling of HRV: Clinical application in acute brain injury
In the last decade, several HRV based novel methodologies for describing and assessing heart rate dynamics have been proposed in the literature with the aim of risk assessment. Such methodologies attempt to describe the non-linear and complex characteristics of HRV, and hereby the focus is in two of these characteristics, namely long memory and heteroscedasticity with variance clustering. The ARFIMA-GARCH modeling considered here allows the quantification of long range correlations and time-varying volatility. ARFIMA-GARCH HRV analysis is integrated with multimodal brain monitoring in several acute cerebral phenomena such as intracranial hypertension, decompressive craniectomy and brain death. The results indicate that ARFIMA-GARCH modeling appears to reflect changes in Heart Rate Variability (HRV) dynamics related both with the Acute Brain Injury (ABI) and the medical treatments effects. (c) 2017, Springer International Publishing AG
The artificial intelligence-based model ANORAK improves histopathological grading of lung adenocarcinoma
The introduction of the International Association for the Study of Lung Cancer grading system has furthered interest in histopathological grading for risk stratification in lung adenocarcinoma. Complex morphology and high intratumoral heterogeneity present challenges to pathologists, prompting the development of artificial intelligence (AI) methods. Here we developed ANORAK (pyrAmid pooliNg crOss stReam Attention networK), encoding multiresolution inputs with an attention mechanism, to delineate growth patterns from hematoxylin and eosin-stained slides. In 1,372 lung adenocarcinomas across four independent cohorts, AI-based grading was prognostic of disease-free survival, and further assisted pathologists by consistently improving prognostication in stage I tumors. Tumors with discrepant patterns between AI and pathologists had notably higher intratumoral heterogeneity. Furthermore, ANORAK facilitates the morphological and spatial assessment of the acinar pattern, capturing acinus variations with pattern transition. Collectively, our AI method enabled the precision quantification and morphology investigation of growth patterns, reflecting intratumoral histological transitions in lung adenocarcinoma
Evolutionary characterization of lung adenocarcinoma morphology in TRACERx
Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and ‘tumor spread through air spaces’ were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk
The evolution of lung cancer and impact of subclonal selection in TRACERx
Lung cancer is the leading cause of cancer-associated mortality worldwide1. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource
The evolution of non-small cell lung cancer metastases in TRACERx
Metastatic disease is responsible for the majority of cancer-related deaths1. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse
Genomic–transcriptomic evolution in lung cancer and metastasis
Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy1. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic–transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary–metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis