75,031 research outputs found
Probing States in the Mott Insulator Regime
We propose a method to probe states in the Mott insulator regime produced
from a condensate in an optical lattice. We consider a system in which we
create time-dependent number fluctuations in a given site by turning off the
atomic interactions and lowering the potential barriers on a nearly pure Mott
state to allow the atoms to tunnel between sites. We calculate the expected
interference pattern and number fluctuations from such a system and show that
one can potentially observe a deviation from a pure Mott state. We also discuss
a method in which to detect these number fluctuations using time-of-flight
imaging.Comment: 4 pages, 3 figures. Send correspondence to
[email protected]
Aspects of Dynamical Chiral Symmetry Breaking
Dynamical chiral symmetry breaking is a nonperturbative phenomenon that may
be studied using QCD's gap equation. Model-independent results can be obtained
with a nonperturbative and symmetry preserving truncation. The gap equation
yields the massive dressed-quark propagator, which has a spectral
representation when considered as a function of the current-quark mass. This
enables an explication of the connection between the infrared limit of the QCD
Dirac operator's spectrum and the quark condensate appearing in the operator
product expansion.Comment: 11, LaTeX2e, ws-procs9x6; contribution to proceedings of the "5th
International Conference on Quark Confinement and the Hadron Spectrum,"
Gargnano, Italy, 10-14/Sept./0
Differences between heavy and light quarks
The quark Dyson-Schwinger equation shows that there are distinct differences
between light and heavy quarks. The dynamical mass function of the light quarks
is characterised by a sharp increase below 1 GeV, whereas the mass function of
the heavy quarks is approximately constant in this infrared region. As a
consequence, the heavy-meson masses increase linearly with the current-quark
masses, whereas the light pseudoscalar meson masses are proportional to the
square root of the current-quark masses.Comment: 4 pages, 3 figures, Contribution to the IVth International Workshop
on Progress in Heavy Quark Physics, 20-22 Sept. 1997, Rostoc
Thermodynamic properties of a simple, confining model
We study the equilibrium thermodynamics of a simple, confining, DSE-model of
2-flavour QCD at finite temperature and chemical potential. The model has two
phases: one characterised by confinement and dynamical chiral symmetry
breaking; and the other by their absence. The phase boundary is defined by the
zero of the vacuum-pressure difference between the confined and deconfined
phases. Chiral symmetry restoration and deconfinement are coincident with the
transition being of first order, except for , where it is second order.
Nonperturbative modifications of the dressed-quark propagator persist into the
deconfined domain and lead to a dispersion law modified by a
dynamically-generated, momentum-dependent mass-scale. This entails that the
Stefan-Boltzmann limit for the bulk thermodynamic quantities is attained only
for large values of temperature and chemical potential.Comment: 11 pages, LaTeX, epsfig.sty, elsart.st
Exposing the dressed quark's mass
This snapshot of recent progress in hadron physics made in connection with
QCD's Dyson-Schwinger equations includes: a perspective on confinement and
dynamical chiral symmetry breaking (DCSB); a pre'cis on the physics of
in-hadron condensates; results on the hadron spectrum, including
dressed-quark-core masses for the nucleon and Delta, their first radial
excitations, and the parity-partners of these states; an illustration of the
impact of DCSB on the electromagnetic pion form factor, thereby exemplifying
how data can be used to chart the momentum-dependence of the dressed-quark mass
function; and a prediction that F_1^{p,d}/F_1^{p,u} passes through zero at
Q^2\approx 5m_N^2 owing to the presence of nonpointlike scalar and axial-vector
diquark correlations in the nucleon.Comment: 10 pages, 4 figures, 2 tables. Contribution to the Proceedings of the
4th Workshop on Exclusive Reactions at High Momentum Transfer, Thomas
Jefferson National Accelerator Facility Newport News, Virginia, 18-21 May
201
Temperature, chemical potential and the rho meson
We describe some applications of the Dyson-Schwinger equations at
nonzero-(T,mu). Employing a simple model dressed-gluon propagator we determine
the boundary of the deconfinement phase transition and the medium dependence of
rho-meson properties. We introduce an extension to describe the time-evolution
of scalar and vector self energies.Comment: 6 pages, LaTeX with 3 EPS figures; Contribution to the 'International
Workshop XXVIII on Gross Properties of Nuclei and Nuclear Excitations',
Hirschegg, Austria, 16-22.01.200
- …
