8 research outputs found
The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety
The microbiota plays a vital role in maintaining gut health and influences the overall performance of chickens. Most gut microbiota-related studies have been performed in broilers, which have different microbial communities compared to those of layers. The normal gut microbiota of laying chickens is dominated by Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and Actinobacteria at the phylum level. The composition of the gut microbiota changes with chicken age, genotype, and production system. The metabolites of gut microbiota, such as shortchain fatty acids, indole, tryptamine, vitamins, and bacteriocins, are involved in hostmicrobiota cross talk, maintenance of barrier function, and immune homeostasis. Resident gut microbiota members also limit and control the colonization of foodborne pathogens. In-feed supplementations of prebiotics and probiotics strengthen the gut microbiota for improved host performance and colonization resistance to gut pathogens, such as Salmonella and Campylobacter. The mechanisms of action of prebiotics and probiotics come through the production of organic acids, activation of the host immune system, and production of antimicrobial agents. Probiotic candidates, including Lactobacillus, Bifidobacterium, Bacillus, Saccharomyces, and Faecalibacterium isolates, have shown promising results toward enhancing food safety and gut health. Additionally, a range of complex carbohydrates, including mannose oligosaccharides, fructo-oligosaccharides, and galacto-oligosaccharides, and inulin are promising candidates for improving gut health. Here, we review the potential roles of prebiotics and probiotics in the reshaping of the gut microbiota of layer chickens to enhance gut health and food safety
Temporal dynamics of gut microbiota in caged laying hens: A field observation from hatching to end of lay
Abstract: Gut health has major implications for the general health of food-producing animals such as the layer birds used in the egg industry. In order to modulate gut microbiota for the benefit of gut health, an understanding of the dynamics and details of the development of gut microbiota is critical. The present study investigated the phylogenetic composition of the gut microbiota of a commercial layer flock raised in cages from hatch to the end of the production cycle. This study also aimed to understand the establishment and development of gut microbiota in layer chickens. Results showed that the faecal microbiota was dominated by phyla Firmicutes and Proteobacteria in the rearing phase, but Bacteroidetes in mid lay and late lay phase. The gut microbiota composition changed significantly during the transfer of the flock from the rearing to the production shed. The richness and diversity of gut microbiota increased after week 6 of the flocks age and stabilized in the mid and late lay phase. The overall dynamics of gut microbiota development was similar to that reported in earlier studies, but the phylogenetic composition at the phylum and family level was different. The production stage of the birds is one of the important factors in the development of gut microbiota. This study has contributed to a better understanding of baseline gut microbiota development over the complete life cycles in layer chickens and will help to develop strategies to improve the gut health. Key points: • Faecal microbiota of caged hens was dominated by phyla Firmicutes and Proteobacteria in the rearing phase. • The gut microbiota composition changed significantly during the transfer of the flock from the rearing to the production shed. • The richness and diversity of gut microbiota increased after week 6 of the flocks age and stabilized in the mid and late lay phase
Poultry feeds carry diverse microbial communities that influence chicken intestinal microbiota colonisation and maturation
Microbial colonisation of the gastrointestinal tract of newly hatched chicks starts at hatch, seeded from the immediate hatching environment, and quickly results in dense colonisation. The role of ecological factors in gut colonisation has been extensively investigated, as well as the role of micro- and macronutrients in supporting and selecting for bacterial species highly adapted for utilising those nutrients. However, the microbial community contained in poultry feed and its influence on colonisation and maturation of gut microbiota has not been directly addressed. In this study, we compared the microbiota found in poultry feed, with the microbiota of ileum, cecum and excreta, to identify substantial overlap in core microbiotas of the compared groups. We then investigated the microbiota present in raw feedstuffs: meat and bone meal, wheat, corn, canola, barley, soybean, millrun, sorghum, poultry oil, oats, limestone and bloodmeal from four geographically distinct feedstuff suppliers. Each of the feedstuffs had diverse microbial communities. The meat and bone meal and bloodmeal samples had the most complex and distinct microbial populations. There was substantial overlap in the phylogenetic composition found in the grain and seed samples: barley, canola, corn, millrun, oats, sorghum, soybean meal and wheat. Issues related to methodology, viability of microbial communities in the gut and feed, and the implications for biosecurity are discussed.[Figure not available: see fulltext.
Phytogenic products, used as alternatives to antibiotic growth promoters, modify the intestinal microbiota derived from a range of production systems: An in vitro model
Abstract: The removal of antibiotics from the feeds used in the livestock industry has resulted in the use of a wide range of alternative antimicrobial products that aim to deliver the productivity and health benefits that have traditionally been associated with antibiotics. Amongst the most popular alternatives are phytogenic product-based extracts from herbs and spices with known antimicrobial properties. Despite embracing such alternatives, the industry is still largely unaware of modes of action, their overall effects on animal health, and interactions with other feed additives such as probiotics. To address some of these issues, three phytogenic products were selected and their interactions with caecal microbiota of layers, grown under six different production systems, were investigated in vitro. Caecal microbiotas were grown with and without phytogenic products, and the changes in microbiota composition were monitored by sequencing of 16S rRNA gene amplicons. Phytogenic products and production system both significantly influenced microbiota composition. The three phytogenic products all altered the relative abundance of species within the Lactobacillus genus, by promoting the growth of some and inhibiting other Lactobacillus species. There were also significant alterations in the Bacillus genus. This was further investigated by comparing the effects of the phytogenic products on the growth of a commercially used Bacillus-based probiotic. The phytogens affected the probiotic mix differently, with some promoting the growth of Bacillus sp. at lower phytogenic concentrations, and fully suppressing growth at higher concentrations, indicating the importance of finding an optimal concentration that can control pathogens while promoting beneficial bacteria. Key points: • After removal of antibiotics from animal feed, urgent solutions for pathogen control were needed. • Alternative products entered the market without much knowledge on their effects on animal health. • Probiotic products are used in combination with phytogens despite the possible incompatibility
Nanoparticles of selenium as high bioavailable and non-toxic supplement alternatives for broiler chickens
Selenium is commonly used in the poultry industry as an additive in broiler feed to improve immunity and overall health. The selenium comes in different forms, inorganic and organic selenium, as sodium selenite and selenomethionine, respectively. This study proposes the use of nanoparticles of selenium (nanoSe) for improved delivery and absorption of the trace element while causing no toxicity. Previous studies have shown the success in utilizing nanoSe in broiler feed, with increased absorption and diffusion of material into organs and tissues, and increased antioxidant capacity. However, the mechanism of nanoSe conversion remains unknown, and the gut microbiota is believed to play a significant role in the process. The use of inorganic selenium in poultry feed demonstrated a lower bioavailability in breast (P ≤ 0.01) and duodenum tissue (P ≤ 0.05), and increased accumulation in organs involved in detoxification processes as compared to organic selenium and selenium nanoparticle supplementation. Histopathological analysis showed that nanoSe did not cause any damaging effects to the tissues analysed, revealing intact epithelial cells in the digestive system and neuronal bodies in brain tissue. The results indicate that nanoparticles of selenium operate a similar way to organic selenium and could potentially be used in poultry feed as a trace element additive
Reduced environmental bacterial load during early development and gut colonisation has detrimental health consequences in Japanese quail
Gastrointestinal colonisation by commensal microbiota is essential for the health and well-being of the host. We aimed to evaluate the influence of a reduced bacterial load environment on microbiota development and maturation, and the possibility of targeted colonisation via at-hatch administration of a selected bacterial strain. Japanese quail (Coturnix japonica) were inoculated within 1 h of hatch with a freshly grown culture of a Lactobacillus agilis isolate derived from a healthy adult quail. Hatchlings were kept in a mouse isolator for one week and then housed between one and four weeks of age, with a flock of normally grown adult quail to expose the bacteria-restricted birds to normal commensal quail bacteria. The bacterial isolate used to inoculate the birds was found to completely dominate the microbiota of the intestine of L.agilis at-hatch inoculated birds. Despite 3 weeks of co-housing of the test birds with an adult flock harbouring normal rich gut microbiota, neither the Lactobacillus inoculated nor PBS inoculated birds reached the level of bacterial diversity seen in birds raised under normal conditions. Neither PBS nor Lactobacillus inoculated birds were able to adopt normal quail microbiota after one week of restricted exposure to bacteria, indicating that contact with diverse microbiota during the early days of gut development in birds is critical for the establishment of healthy intestinal community. Very early intervention in the form of a suitable bacterial probiotic inoculant immediately post-hatch protected birds grown in extreme hygiene conditions from developing anomalous gut microbiota and intestinal damage. Our data shows that it is possible to induce dominance of desired strain using simple timed manipulation
The temporal fluctuations and development of faecal microbiota in commercial layer flocks
The microbiota of the gastrointestinal tract influences gut health, which in turn strongly impacts the general health and productivity of laying hens. It is essential to characterise the composition and temporal development of the gut microbiota in healthy layers raised under different management systems, to understand the variations in typical healthy microbiota structure, so that deviations from this might be recognised and correlated with production and health issues when they arise. The present investigation aimed to study the temporal development and phylogenetic composition of the gut microbiota of four commercially raised layer flocks from hatch to end of the production cycle. Non-intrusive faecal sampling was undertaken as a proxy to represent the gut microbiota. Sequencing of 16S rRNA gene amplicons was used to characterise the microbiota. Beta diversity analysis indicated that each faecal microbiota was different across the four flocks and had subtly different temporal development patterns. Despite these inter-flock differences, common patterns of microbiota development were identified. Firmicutes and Proteobacteria were dominant at an early age in all flocks. The microbiota developed gradually during the rearing phase; richness and diversity increased after 42 d of age and then underwent significant changes in composition after the shift to the production farms, with Bacteroidota becoming more dominant in older birds. By developing a more profound knowledge of normal microbiota development in layers, opportunities to harness the microbiota to aid in the management of layer gut health and productivity may be more clearly seen and realised
Deficiency of dietary fiber modulates gut microbiota composition, neutrophil recruitment and worsens experimental colitis
Ulcerative colitis is an inflammatory disease of the colon that is associated with colonic neutrophil accumulation. Recent evidence indicates that diet alters the composition of the gut microbiota and influences host–pathogen interactions. Specifically, bacterial fermentation of dietary fiber produces metabolites called short-chain fatty acids (SCFAs), which have been shown to protect against various inflammatory diseases. However, the effect of fiber deficiency on the key initial steps of inflammation, such as leukocyte–endothelial cell interactions, is unknown. Moreover, the impact of fiber deficiency on neutrophil recruitment under basal conditions and during inflammation in vivo is unknown. Herein, we hypothesized that a fiber-deficient diet promotes an inflammatory state in the colon at baseline and predisposes the host to more severe colitis pathology. Mice fed a no-fiber diet for 14 days showed significant changes in the gut microbiota and exhibited increased neutrophil-endothelial interactions in the colonic microvasculature. Although mice fed a no-fiber diet alone did not have observable colitis-associated symptoms, these animals were highly susceptible to low dose (0.5%) dextran sodium sulphate (DSS)-induced model of colitis. Supplementation of the most abundant SCFA, acetate, prevented no-fiber diet-mediated enrichment of colonic neutrophils and colitis pathology. Therefore, dietary fiber, possibly through the actions of acetate, plays an important role in regulating neutrophil recruitment and host protection against inflammatory colonic damage in an experimental model of colitis